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Abstract

MonPoly is a monitoring tool for checking logs against formulas of metric first-order
temporal logic. We provide here an overview of the tool, including its usage and history.

1 Introduction

MonPoly is a monitoring tool for checking the compliance of systems to policies, which identifies
and reports all policy violations. Systems may be IT systems or other kinds of systems that
produce streams of events, and policies express which system behaviors are allowed in terms of
these event streams. The events can be monitored online, as they are produced by the system,
or offline, by processing the events stored in log files.

MonPoly has a rich policy specification language based on metric first-order temporal logic
(MFOTL). MFOTL’s first-order features make it well suited for formalizing relations between
event arguments. Moreover, its metric temporal operators can be used to specify qualitative
and quantitative time constraints between events. Finally, its policy language includes operators
for aggregating data values, which are useful in formulating many kinds of policies.

MonPoly is written in the programming language OCaml and is available at https:

//sourceforge.net/projects/monpoly. The website includes the tool’s source code, and
various log files and policy formalizations that were used in our case studies to evaluate the
tool’s performance.

In the following sections, we provide an overview of MonPoly. We describe the tool,
version 1.1.7, including a brief description of its foundations and its input and output; in the
appendix, we also provide additional usage guidelines. Afterwards, we recall the tool’s history.
This includes past case studies and we also provide pointers to some of our research results.

2 Tool Description

2.1 Foundations

We sketch here MonPoly’s underlying monitoring algorithm for temporal structures with finite
relations, which was first described in [8]. We refer to [9] for its algorithmic details, theoretical
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underpinnings, and a description of MFOTL. We also refer to [6] for details on MFOTL’s
extension with aggregations operators.

The monitoring algorithm incrementally processes a temporal structure, which is an infinite
sequence of timestamped first-order structures. We assume that the interpretation of each
predicate symbol in each first-order structure from the input sequence is a finite relation (except
for the interpretations of the rigid predicates like equality and ordering). We exploit here the fact
that an event can be seen as a first-order structure, where an event is an element from the set
Σ×D∗, for some finite set Σ of event names and some infinite value domain D. Indeed, for an
event e(d1, . . . , dn), the name e is seen as a predicate symbol with the singleton {(d1, . . . , dn)}
as its interpretation. Thus, temporal structures can readily encode event streams.

We assume that policy formalizations are closed formulas of the form �∀x̄. ϕ (� stands for
“always”). The universal quantification is not a restriction as the sequence x̄ can be empty and
ϕ can have additional topmost universal quantifiers. Our algorithm takes as input a formula
ψ logically equivalent to ¬ϕ. It outputs for each time point (i.e. index in the input sequence
of first-order structures) the satisfying valuations of the formula ψ. These represent policy
violations. The universal quantification is dropped because a satisfying instantiation of the free
variables x̄ provides additional information about the violation.

To effectively monitor policies, our algorithm only handles a safety fragment of MFOTL.
Namely, the temporal future operators occurring in the input formulas ψ are bounded, e.g. sub-
formulas of the form �[a,∞) γ and in particular � γ (”eventually” γ) are disallowed, while

�[a,b) γ is allowed, for any a, b ∈ Q≥0. Since ψ is bounded and time progresses, only finitely
many future time points must accounted for when determining the satisfying valuations of ψ
at a time point. This evaluation is delayed until the algorithm reads the data of the relevant
future time points.

To determine at each time point the satisfying valuations of ψ, our algorithm evaluates the
formula ψ bottom-up and stores intermediate results in finite relations. These are updated in
each iteration and reused in later iterations. We require that ψ is such that the intermediate
results are always finite relations. In particular, the use of negation and quantification is
syntactically restricted. These restrictions are adapted from database query evaluation [1].
Before starting the monitoring process, MonPoly checks whether the given formula satisfies
these requirements.

2.2 Policy Specification

As a policy example, consider the following property from the domain of fraud detection. It
requires that, at each point in time, the sum of withdrawals of each user in the last 30 days
does not exceed the limit of $10,000. We assume that the event withdraw(u, a) captures that
the user u has withdrawn the amount a, and that events are timestamped. Note that this event
corresponds to the homonymous predicate symbol used in the propert specification below.

The formalization of this property in the extension of MFOTL with aggregations is as follows.

�∀s.∀u. [SUMa �[0,30) withdraw(u, a) ∧ tp(i)](s;u)→ s < 10000 (1)

Let us consider this formula in more detail. First, the time window of 30 days is specified by
attaching the interval [0, 30) to the temporal operator � (“once”). Intuitively, the formula �I ϕ
states that ϕ holds at some time point in the past within the time window represented by the
interval I. In other words, the difference τ − τ ′ between the timestamp τ of the current position
and timestamp τ ′ of the past position must be within I. If the interval I includes zero, then the
current time point is also considered.
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Second, the occurrences of withdraw events at different time points, for the same user and of
the same amount, are distinguished by using the built-in unary predicate tp. The predicate tp(i)
holds at the time point j iff i = j. Note that MFOTL has a set, rather than a multiset semantics.
Thus the intended meaning of the policy would be incorrectly captured if this conjunct were
omitted.

Third, we use the aggregation operator SUM to express the aggregation (as a sum) of the
withdrawal amounts over the specified time window, grouped by the users. The operator, at the
current time point, groups all withdrawals for a user u over the past 30 days and sums up their
amounts a. The aggregation formula defines a binary relation where the first coordinate is the
SUM’s result s and the second coordinate is the user u for whom the result is calculated. In
general, an aggregation formula has the form [ωxψ](y; ḡ), where ω is an aggregation operator
like SUM, CNT, and AVG, with the expected meanings. The semantics of aggregation formulas
mimics that of aggregations and grouping operations in SQL: by viewing variables as (relation)
attributes, ḡ are the attributes on which grouping is performed, x is the attribute on which the
aggregation operator ω is applied, and y is the attribute that stores the result. The remaining
free variables in ψ (i.e. those different from y and not in ḡ) are bound by the aggregation formula;
they do not have a corresponding attribute in the resulting relation. This is the case for the
variable i in formula (1).

Finally, if a user’s sum is greater than 10000, then the property is violated at the current
time point. The formula therefore states that the aggregation condition must hold for each user
and every time point.

2.3 Input and Output

MonPoly takes as command-line input a signature file, a formula file, and a log file. It outputs
satisfying valuations of the given formula on the given log file.

The signature file describes the first-order signature of the formula used. MonPoly assumes
sorted signatures, and it currently supports the sorts string, integer, and float. For our example
policy, we use the following single-line signature file.

withdraw(string,int)

The formula file contains the policy as an MFOTL formula, possibly containing aggregation
operators. In this example, we assume that the file contains the following formula.

(s <- SUM a;u ONCE[0,30] withdraw(u,a) AND tp(i))

AND

NOT s <= 10000

Note that this formula is the negation of the formula (1), where the outermost temporal
operator � and the universal quantifier block are dropped. The grammar for MonPoly’s policy
specification language is provided in the appendix.

A log file consists of a sequence of timestamped system events, which are ordered by their
timestamps. Events that are assumed to occur simultaneously are grouped together. For
example, consider the following log file.1

1For brevity, we assume here that the time unit of the timestamps is one day. Consequently, the metric
constraint [0,30] of the temporal operator ONCE in the formula is interpreted as days. In practice, timestamps are
often in Unix time and MonPoly’s default time unit is thus one second. In particular, the metric constraints
given as intervals attached to temporal operators are then in seconds. For convenience, one can use predefined
abbreviations like m for minutes and d for days, e.g. one can attach the interval [0,30d] to a temporal operator.
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@10 withdraw (Alice,6000)

@20 withdraw (Bob,300) (Dan,300)

@20 withdraw (Charlie,2000)

@30 withdraw (Alice,6000)

@60 withdraw (Charlie,9000)

This log states that Alice withdrew $6,000 at time point 0 with the timestamp 10, Bob and Dan
both withdrew $300 at time 20, and so on. If two events have the same timestamp (possibly
due to an insufficiently precise clock), but occur at different time points, then this means that
the events are still ordered time-wise (possibly by additional information that determines the
ordering). However, events at the same time point, like Bob and Dan’s withdrawals, are not
ordered.

MonPoly outputs

@30. (time-point 3): (12000,Alice)

when running on the above input:

monpoly -sig example.sig -formula example.mfotl -log example.log

where the signature, the formula, and the timestamped events from above are contained in
the respective example files. Recall that the formula file contains the negated policy with free
variables. Thus, policy violations correspond to satisfying valuations for the given formula at a
time point. In fact, at the time point with timestamp 30, Alice withdrew in total $12,000 within
the last 30 days and has thus violated the policy. Note that although Charlie withdrew $11,000
in total, he did not violate the policy since his two withdrawals—both under $10,000—do not
fall into the same 30 day time window.

Note that without the -log argument, MonPoly expects to receive the event sequence on
standard input. This enables MonPoly to be used in an online manner, where the timestamped
events are input through a Unix pipe rather than a log file.

3 Tool History

MonPoly’s underlying monitoring algorithm was first presented in [8] (see also [9]) and extends
Chomicki’s approach [12] for dynamically checking integrity constraints in temporal databases.
The monitoring algorithm also handles sequences of first-order structures that are represented
by automata instead of finite relations (as assumed by MonPoly). In this more general case,
intermediate results are stored as automata and the syntactic restrictions on negation and
quantification are not needed. However, the performance overhead is significant.

Our first implementation of the monitoring algorithm for finite relations was programmed
in Java. We used this implementation to evaluate MFOTL’s suitability for expressing and
checking a wide range of security policies [7]. We reimplemented the monitoring algorithm in the
programming language OCaml, with several optimizations, resulting in the first version of the
MonPoly tool [5]. Later, we extended MonPoly with support for function symbols (allowing,
for instance, specifications involving arithmetic operators) and for operators that aggregate data
values [6]. As these features often appear in policies, this extension significantly broadened the
tool’s scope.

We have also optimized MonPoly’s treatment of subformulas of the form �I γ and �I γ.
Our optimization uses an algorithm for combining elements with an associative operator ⊕ in
a sliding window of varying size of an infinite sequence ā [10]. This algorithm is greedy and
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optimal in the number of ⊕ applications. In MonPoly’s setting, the sequence ā corresponds to
the sequence of relations consisting of the tuples that satisfy the subformula γ, the associative
operator ⊕ is set union, and the sliding window is determined by the timing constraint I.

We used MonPoly in two larger case studies. In the first case study, we monitored the
usage of data within Nokia’s data-collection campaign [13], where contextual information from
cell phones was collected, including phone locations, call and SMS information, and the like.
Given the data’s high sensitivity, usage-control policies govern what actions may and must not
be performed on the collected data. The second case study was in collaboration with Google [4],
where we checked policies over huge distributed log files. In comparison to the Nokia case
study, the logs were 100 times larger in terms of the number of events and 50 times larger in
data volume. Namely, the log files contained over 26 billion events from a two year’s period,
amounting to 0.4 TB of logged data in a protocol buffers format. We used the map-reduce
framework to slice logs and monitor the sliced logs separately with MonPoly. Furthermore,
MonPoly participated in the offline track of the first competition on runtime verification in
2014 [2], where it scored the second place.

4 Outlook

We see increasing applications for monitoring in the future. IT systems are collecting and
processing ever increasing amounts of data while, at the same time, there are increasingly many
regulations on how such data can be used. It is therefore important to develop monitoring
approaches that scale well to “big data” scenarios. As previously mentioned, we have used
our slicing framework and the map-reduce framework as a wrapper to run multiple MonPoly
instances in parallel. This is suitable for scaling up monitoring in the offline setting. We are
currently working on parallelizing MonPoly in the online setting.

It is also important to develop suitably expressive monitoring languages with associated
algorithms that have better runtime complexity than MonPoly, where monitoring, in the worst
case, requires space polynomial in the event stream prefix being monitored. Promising recent
work in this regard is developing monitors whose space consumption is (almost) independent of
the event rate of the stream being monitored. The recent work [3, 11] shows how this can be
done for different fragments and extensions of propositional metric temporal logic. It remains
to be seen whether these fragments can be extended to a first-order setting, and lead to more
efficient tools than MonPoly for fragments of MFOTL.

Acknowledgments. We thank Matúš Harvan and Srdjan Marinovic for their contributions to
the MonPoly tool. Furthermore, we thank Nokia Research and Google for their past support.
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A Usage Guidelines

Main Command-Line Arguments. As usual, the list of MonPoly’s command-line argu-
ments is provided by using the -help argument. We start by explaining MonPoly’s most
important arguments. Only the -sig and -formula arguments are mandatory, where the speci-
fied files contain a signature and a formula, respectively. A log file can be given to MonPoly
using the -log argument. When the -log argument is missing MonPoly reads the sequence of
timestamped events (or, more accurately, first-order structures) from the standard input.

When the -negate argument is present, MonPoly negates the given formula. In what
follows, let the input formula be the formula contained in the formula file, or its negation in
case the -negate argument is given. By default, MonPoly applies a series of rewrite rules to
the input formula to simplify it. We call the resulting formula the analyzed formula. Note that
the analyzed formula corresponds to the formula ψ in Section 2.1.

The rewrite rules mainly eliminate syntactic sugar2 and double negations, and push negations
inwards, in case the -negate argument was given. Furthermore, if the resulting formula is
not monitorable, MonPoly applies additional rewrite rules that try to put the formula into a

2Concretely, the following equivalences are used to rewrite the formulas on the left-hand side of the ≡ symbol:
α↔ β ≡ (¬α ∨ β) ∧ (α ∨ ¬β), α→ β ≡ ¬α ∨ β, ∀x̄. α ≡ ¬∃x̄.¬α, �I α ≡ ¬ �I ¬α, and �I α ≡ ¬ �I ¬α.
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monitorable form. Recall that MonPoly only handles a syntactically-defined safety fragment
of MFOTL. The -no rw argument instructs MonPoly not to perform such rewrites. Note that
with the -no rw argument, the analyzed formula is syntactically equal to the input formula.
Furthermore, MonPoly always reports that the analyzed formula is not monitorable when the
input formula has free variables, and both arguments -no rw and -negate are present.

Monitorable Formulas. With the -check argument, no monitoring is performed. Instead,
MonPoly checks whether the analyzed formula is monitorable, that is, whether it satisfies the
syntactic requirements needed by the monitoring algorithm. Furthermore, MonPoly outputs
the analyzed formula together with its free variables. For instance, when trying to detect
satisfactions of the policy from Section 2.2, by calling MonPoly as

monpoly -sig example.sig -formula example2.mfotl -check

where example2.mfotl contains the formula (1), again with the outermost temporal operator �
and the universal quantifier block dropped, MonPoly’s output is as follows.

The input formula is:

(s <- SUM a; u ONCE[0,30] (withdraw(u,a) AND tp(i))) \

IMPLIES s <= 10000

The analyzed formula is:

(NOT s <- SUM a; u ONCE[0,30] (withdraw(u,a) AND tp(i))) \

OR s <= 10000

The sequence of free variables is: (s,u)

The analyzed formula is not monitorable because of the \

following subformula:

NOT s <- SUM a; u ONCE[0,30] (withdraw(u,a) AND tp(i))

Subformulas of the form NOT psi should contain no free \

variables (except when they are part of subformulas of the form\

phi AND NOT psi, NOT psi SINCE_I phi, or NOT psi UNTIL_I phi).

The analyzed formula (as well as any logically equivalent formula) is not monitorable because at
each time point there are infinitely many tuples (s, u) satisfying it. Note that MonPoly also
outputs the subformula that causes the analyzed formula to be non-monitorable, and it provides
the reason why this subformula is not monitorable. Note that with the -negate argument, in
this example, the analyzed formula becomes the (monitorable) one from example.mfotl.

We remark that even when the analyzed formula is monitorable, it is generally a good idea to
inspect it, using the -check argument, and simplify it if possible while retaining monitorability.
Simplifications usually result in performance improvements during monitoring. For instance,
instead of the subformula ∃x. (p(x, y)∧q(z)), it is better to use the logically equivalent subformula
(∃x. p(x, y)) ∧ q(z). This is because with the latter subformula the intermediate relations are
smaller than with the first one.

The following example provides further intuition about non-monitorable formulas and how to
deal with them. Consider the policy that requires that any published report r must be approved
by a manager m within six days:

�∀r. ∀m. publish(r)→ �[0,6] approve(m, r)

It may be tempting to use MonPoly directly with the formula

publish(r) IMPLIES EVENTUALLY[0,6] approve(m,r)
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and the -negate argument. However, the formula’s negation is not monitorable. The intuitive
reason is that a policy violation is already identified by a non-approved report (and the time
point where the report was published); no particular manager is responsible for causing the
policy violation. More formally, given a report r that is it not approved in the required time
window by any manager, each tuple (r,m) satisfies the analyzed formula, for any m. As we
assume an infinite domain, there are infinitely many such tuples. For monitoring, we must
retain the universal quantification over the managers. However, MonPoly does not succeed in
rewriting the negation of the formula

FORALL m. publish(r) IMPLIES EVENTUALLY[0,6] approve(m,r)

into a monitorable formula. The rewriting must be done by hand (and MonPoly must be used
without the -negate argument):

publish(r) AND NOT EVENTUALLY[0,6] EXISTS m. approve(m,r)

Finite Event Sequences and Future Temporal Operators. By default, MonPoly adds
a last time point with a large enough timestamp (more exactly, the largest representable
timestamp), at the end of the input event sequence. This ensures that temporal subformulas
with a future temporal operator can be evaluated at all time points in the original event sequence.
Note that this behavior introduces the assumption that “nothing happens” after the end of the
input sequence; that is, that there are no time points after the last time point in the original
sequence. The argument -nonewlastts can be used to change this default behavior.

MonPoly cannot deal with formulas that contain unbounded future temporal operators.
However, when monitoring a finite sequence of events, it often suffices to replace the unbounded
future operators with bounded ones, having a large enough upper bound. For instance, an upper
bound bigger then the last timestamp in the input sequence is enough. Such a rewrite must
however done with some care. First, in general, the resulting formula is not logically equivalent
to the original one. Second, MonPoly may delay output until the last log entry is read.

Other Command-Line Arguments. By default, MonPoly filters out events that cannot
influence the monitor’s output. It also filters out time points with no events when they do not
influence the monitor’s output. The arguments -nofilterrel and -nofilteremptytp can be
used to change this default behavior.

MonPoly has additional command-line arguments, with self-explanatory names, instructing
it whether to ignore parse errors or out-of-order time points in the input event stream, and
whether to provide debugging information or resource usage statistics.

B Grammar

B.1 Signatures

The grammar of MonPoly’s signatures is as follows.

〈signature〉 ::= 〈predicate〉 〈signature〉 | 〈empty〉
〈predicate〉 ::= 〈string〉 ‘(’ 〈sorts〉 ‘)’

〈sort-list〉 ::= 〈sort〉 ‘,’ 〈sort-list〉 | 〈sort〉 | 〈empty〉
〈sort〉 ::= ‘string’ | ‘int’ | ‘float’
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B.2 Log Entries

MonPoly reads a log file incrementally, one log entry at a time. The grammar of the log entries
is as follows. A log file is a sequence of log entries.

〈log-entry〉 ::= ‘@’ 〈ts〉 〈db〉
〈ts〉 ::= 〈integer〉 | 〈float〉
〈db〉 ::= 〈table〉 〈db〉
〈table〉 ::= 〈string〉 〈relation〉
〈relation〉 ::= 〈tuple〉 〈relation〉 | 〈empty〉
〈tuple〉 ::= ‘(’ 〈fields〉 ‘)’

〈fields〉 ::= 〈string〉 ‘,’ 〈fields〉 | 〈string〉 | 〈empty〉

B.3 Policy Specification Language

The grammar of MonPoly’s policy specification language is as follows.

〈formula〉 ::=
| ‘(’ 〈formula〉 ‘)’
| ‘FALSE’
| ‘TRUE’
| 〈predicate〉
| 〈term〉 ‘=’ 〈term〉
| 〈term〉 ‘<’ 〈term〉
| 〈term〉 ‘>’ 〈term〉
| 〈term〉 ‘<=’ 〈term〉
| 〈term〉 ‘>=’ 〈term〉
| 〈formula〉 ‘EQUIV’ 〈formula〉
| 〈formula〉 ‘IMPLIES’ 〈formula〉
| 〈formula〉 ‘OR’ 〈formula〉
| 〈formula〉 ‘AND’ 〈formula〉
| ‘NOT’ 〈formula〉
| ‘EXISTS’ 〈var-list〉 ‘.’ 〈formula〉
| ‘FORALL’ 〈var-list〉 ‘.’ 〈formula〉
| 〈var〉 ‘<-’ 〈aggreg〉 〈var〉 ‘;’ 〈var-list〉 〈formula〉 // aggregation formula
| 〈var〉 ‘<-’ 〈aggreg〉 〈var〉 〈formula〉 // variant with no group-by variables
| ‘NEXT’ 〈interval-opt〉 〈formula〉
| ‘PREV’ 〈interval-opt〉 〈formula〉
| ‘EVENTUALLY’ 〈interval-opt〉 〈formula〉
| ‘ONCE’ 〈interval-opt〉 〈formula〉
| ‘ALWAYS’ 〈interval-opt〉 〈formula〉
| ‘PAST ALWAYS’ 〈interval-opt〉 〈formula〉
| 〈formula〉 ‘SINCE’ 〈interval-opt〉 〈formula〉
| 〈formula〉 ‘UNTIL’ 〈interval-opt〉 〈formula〉
〈predicate〉 ::=
| 〈string〉 ‘(’ 〈term-list〉 ‘)’
| ‘tp’ ‘(’ 〈term〉 ‘)’ // time point predicate
| ‘ts’ ‘(’ 〈term〉 ‘)’ // timestamp predicate
| ‘tpts’ ‘(’ 〈term〉 ‘,’ 〈term〉 ‘)’ // time point and timestamp predicate
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〈aggreg〉 ::=
| ‘CNT’ // counting aggregation operator
| ‘MIN’ // minimum aggregation operator
| ‘MAX’ // maximum aggregation operator
| ‘SUM’ // sum aggregation operator
| ‘AVG’ // average aggregation operator
| ‘MED’ // median aggregation operator

〈interval-opt〉 ::= 〈lbound〉 ‘,’ 〈rbound〉 | 〈empty〉
〈lbound〉 ::= ‘(’ 〈bound〉 | ‘[’ 〈bound〉
〈rbound〉 ::= 〈bound〉 ‘)’ | 〈bound〉 ‘]’ | ‘*)’

〈bound〉 ::= 〈integer〉〈unit〉 | 〈integer〉
〈unit〉 ::= ‘s’ | ‘m’ | ‘h’ | ‘d’

〈term-list〉 ::= 〈term〉 ‘,’ 〈term-list〉 | 〈term〉 | 〈empty〉
〈var-list〉 ::= 〈var〉 ‘,’ 〈var-list〉 | 〈var〉 | 〈empty〉
〈term〉 ::=
| ‘(’ 〈term〉 ‘)’
| 〈term〉 ‘+’ 〈term〉
| 〈term〉 ‘-’ 〈term〉
| 〈term〉 ‘*’ 〈term〉
| 〈term〉 ‘/’ 〈term〉
| 〈term〉 ‘MOD’ 〈term〉 // modulo operation
| ‘-’ 〈term〉
| ‘f2i’ ‘(’ 〈term〉 ‘)’ // float to integer conversion
| ‘i2f’ ‘(’ 〈term〉 ‘)’ // integer to float conversion
| 〈cst〉
| 〈var〉
〈cst〉 ::= 〈integer〉 | 〈rational〉 | ‘"’ 〈string〉 ‘"’

〈var〉 ::= ‘ ’ | 〈string〉

The following table explains the correspondence between mathematical notation and Mon-
Poly notation for the symbols denoting connectives, quantifiers, and temporal operators. The
table also specifies MonPoly’s convention on a symbol’s precedence and associativity. The
symbols are declared to associate to the left, to the right, or to be non-associative (marked by
’none’). All symbols on the same line are given the same precedence. The symbols listed in a
row are given lower precedence than the symbols listed in a previous row (and higher precedence
than the symbols listed in a subsequent row).

symbol MonPoly terminal associativity

¬ NOT none
∧ AND left
∨ OR left
→ IMPLIES right
↔ EQUIV left
∃ ∀ EXISTS FORALL none
 # � � � � PREV NEXT ONCE EVENTUALLY PAST ALWAYS ALWAYS none
S U SINCE UNTIL right
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