
EPiC Series in Computing

Volume 56, 2018, Pages 1–10

Proceedings of the 5th International
OMNeT++ Community Summit

jUDPWrapper: A Lightweight Approach to Access the

OMNeT++/INET UDP Functionality from Java

Henning Puttnies1, Peter Danielis1, Leonard Thiele1, and Dirk Timmermann1

University of Rostock, Faculty of Computer Science and Electrical Engineering, Institute of Applied
Microelectronics and Computer Engineering, Germany

henning.puttnies@uni-rostock.de

Abstract

There are three methods to evaluate networked systems during the design phase: by
means of simulation, a practical testbed, and mathematical analysis. In this paper, we
propose the jUDPWrapper, which enables to access the OMNeT++/INET UDP function-
ality from Java using the Java Extensions for OMNeT++. The jUDPWrapper provides
a socket-based API corresponding to the standard API defined in the java.net package.
Consequently, it enables to develop application layer simulation models in Java and here-
after easily derive a Java prototype implementation. Therefore, the jUDPWrapper eases
the evaluation of Java UDP applications using both simulation and practical testbed. We
evaluate the jUDPWrapper using two distinct versions of OMNeT++/INET, provide the
Java Extensions for OMNeT++ 5.4, and for the first time quantify the execution time of
Java models versus C++ models. C++ models are approx. twice as fast as Java models
in long simulation runs, if the release mode is used.

1 Introduction

The evaluation of networks during the design phase is possible using three different methods,
namely: simulation, testbed, and math analysis [11]. Network simulation frameworks (e.g., the
Objective Modular Network Testbed in C++, OMNeT++) are specifically important tools to
evaluate new approaches (e.g., for security, communication, time synchronization) in large scale
scenarios with many networked nodes, as a testbed implementation is both expensive and time
consuming. Widely used simulation frameworks like OMNeT++ provide the ability to reuse
existing modules. This allows to setup a simulation with comparably low effort.

On the other hand, the Java programming language is suitable for rapid prototyping in
practical testbeds as it is relatively easy to debug and platform independent. Therefore, we
extensively use Java applications in our testbeds (e.g., in the Mini-Mesh testbed [8] or for
the evaluation of the PSPI-Sync approach [4]). Moreover, Java is even suitable for real-time
applications in the Industrial Internet of Things (IIoT) as shown in [6].

Our idea of an enhanced evaluation methodology is to first develop Java simulation models
using OMNeT++ and afterwards derive a Java prototype implementation. Finally, the real
world results (e.g., delays, energy consumption, background traffic) can be fed back into the

A. Förster, A. Udugama, A. Virdis and G. Nardini (eds.), OMNeT 2018 (EPiC Series in Computing, vol. 56),
pp. 1–10

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

simulation to get more precise results for large scale scenarios. Although this is already possible
for C++ models, using Java and OMNeT++ can be seen as a trade-off between implementation
effort and computation time.

As the Java Extensions for OMNeT++ (JEO) exist [9], the next logical step is to provide
a socket-based API for the OMNeT++/INET UDP functionality to ease the implementation
of Java application layer simulation models (ALSM) as well as the derivation of prototype
implementations. This approach is similar to the classes DatagramSocket and UDPSocket for
C++ ALSMs and the API is consistent with the Java standard API in the java.net package.
We focus on UDP in this paper, as many IoT protocols run over UDP (e.g., CoAP, MQTT-SN)
and since it is more lightweight than TCP. Our contributions are as follows:

• Development of the jUDPWrapper, which provides a simple and socket-based interface to
INET’s UDP functionality.

• The jUDPWrapper also serves as an example of how to access INET modules from Java, as
we describe a generic approach to access message fields that have a custom data type (e.g.,
an instance of a C++ class). Applications of this are the UDPSendCommands of INET
that comprise source and destination addresses being of the custom type L3Address. This
is important for the jUDPWrapper as we have to communicate with the udp module of
INET. Moreover, this is important for the JEO in general as the interface towards INET
is crucial to reuse existing modules. This was also a major challenge for the development
of the jUDPWrapper as the JEO supported only the access to fields of standard types
previously (e.g., int, double, and bool).

• We contribute with different example applications to show the interoperability between
Java ALSMs and INET modules as well as C++ ALSMs and to ease the development
of custom Java ALSMs. We evaluate the jUDPWrapper using both: OMNeT++ 5.0
with INET 3.4.0 and OMNeT++ 5.4 with INET 3.6.4. Thus, we also provide the Java
Extensions for OMNeT++ 5.4. Concerning the performance, we demonstrate that C++
ALSMs are approx. twice as fast as Java ALSMs in long simulation runs and the release
mode. However, this speedup is reduced in debug mode or if a mixed language setup is
used (e.g., some C++ ALSMs and some Java ALSMs).

• Finally, the entire System (OMNeT++, JEO, jUDPWrapper, and examples) is publicly
available 1. These examples are easy to use as there is no configuration effort (e.g., for
the Java class paths or linking towards several shared libraries). Moreover, everyone can
retry the performance measurements.

The rest of this paper is organized as follows. Section 2 gives an overview of the basics
of jUDPWrapper: the JEO and the UDP implementation in OMNeT++/INET. Section 3
describes related works and their suitability for Java ALSMs. Section 4 describes the conception
of the jUDPWrapper and sketches its implementation. The evaluation is given in Section 5,
and Section 6 concludes the paper.

2 Basics

Before describing the jUDPWrapper, we want to give some basic information about the JEO
as well as the current implementation of UDP in INET in order to ease the understanding of

1We share the VM as *.ova:
https://unibox.uni-rostock.de/dl/fi63hr2MKwtk1RaysdMrzgnV/.zip

2

https://unibox.uni-rostock.de/dl/fi63hr2MKwtk1RaysdMrzgnV/.zip

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

this paper.

2.1 Java Extensions for OMNeT++ (JEO)

The JEO base on Java Native Interface (JNI), were available from OMNeT++ 3.X to 4.6, and
were newly generated for OMNeT++ 5.X [9]. The JEO provide a new simulation executable
called jsimple. This executable comprises the OMNeT++ simulation kernel as well as several
interface classes and methods. The class jSimpleModule allows implementing the functionality
of simple modules in Java in the same manner as SimpleModule allows implementing in C++.
Accessing fields of cMessages and cObects (or derived classes) is possible by using the setField()
and getField() methods that implement the interface between the C++ and Java domain using
strings as intermediate types.

2.2 The Implementation of UDP in OMNeT++/INET

The UDP protocol is implemented in a module named udp in INET. An important part is
the class UDPControlInfo. An instance of this class is attached to every message that is sent
from the ALSM to udp. The UDPControlInfo specifies whether the message contains: data
and thus is a UDP datagram (UDPDataIndication) or it is a command message, e.g., to bind
a socket (UDPBindCommand), connect a socket (UDPConnectCommand) or close a socket
(UDPCloseCommand).

Furthermore, INET provides the UDPSocket convenience class to ease the use of the UDP
functionality. This class provides a socket-based API with functions to create and configure
a socket and send datagrams [2] (e.g., bind(), connect(), send()). Finally, INET provides the
module interface IUDPApp for UDP apps. IUDPApp severs as template for ALSMs that are
applicable in StandardHost [2].

3 Related Work

In this section, we refer to related works and analyze their support of Java simulation models.
The network ns-3 simulator (ns-3) [5] supports the execution of applications software using

Linux containers (LXC) [1]. This also provides the ability to execute Java applications, if the
container has installed a JVM. However, this approach has two main drawbacks. Firstly, this
only allows to execute ALSM in contrast to the JEO were Java simulation models can reside at
any network layer. Secondly, it is very difficult to synchronize the virtual times of the simulator
and the guest system. One research approach to accomplish this is TimeKeeper [7] but there is
the need to modify the Linux kernel accordingly and there is still an error between the actual
simulation time and the time of the guest system.

Moreover, ns-3 provides the Direct Code Execution (DCE) to run existing implementations
without source code changes, e.g., for using real implementations of userspace or kernelspace
network protocols. DCE overrides the systems calls in order to create an interface between the
implementation and the ns-3 simulator. Unfortunately, DCE only supports C++ source code.

The Fast Network Simulation Setup (FNSS) [10] is a tool chain that simplifies the process
of setting up a network experiment scenario and supports various frameworks for network
simulation and emulation like ns-2, ns-3, Mininet, Omnet++, Autonetkit and jFed. FNSS
supports the Python, C++, and Java programming languages. However, the applied simulation
framework restricts the tool. In other words, using Java simulation models is possible only if
supported by the simulator.

3

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

As noted in [9], there are several Java compatible network simulation frameworks, that are
not longer under maintenance: JNS, JNetworkSim, JProwler, Java Simulator, and SSFnet.

To conclude, there is, to the best of our knowledge, no other simulation framework that
supports Java simulation models as good as OMNeT++ and the JEO.

4 jUDPWrapper

In this section, we describe the jUDPWrapper that uses the JEO. Hence, the jUDPWrapper
serves also as example use of the JEO. Firstly, we highlight its components and a few of the
most important API methods. Secondly, we propose a generic approach to access message fields
that have a custom data type. The proposed approach is the successor of several considered
ones. See section 4.3 for the alternatives. For the conception of the jUDPWrapper we state the
following design targets:

I It should fit optimally into the existing OMNeT++/INET ecosystem. However, no mod-
ifications shall be made to the OMNeT++/INET code.

II It should be as lightweight as possible to easily keep track with progressing versions of
OMNeT++/INET.

4.1 Access the OMNeT++/INET UDP Functionality from Java

As depicted in Fig. 1(a), the Java ALSM uses the jUDPWrapper to interface with INET. The
jUDPWrapper translates the socket-based API calls into messages to the INET udp module.
Writing a Java ALSM using the jUDPWrapper is similar to writing C++ ALSMs with INET.
As depicted in Fig. 1(b) the Java ALSMs are compatible with INET’s StandardHost. It has to
implement the IUDPApp module interface defined in INET (ned: like IUDPApp) and it has to
extend (ned: inherits from) the JSimpleModule to use the OMNeT++ simulation kernel in Java.
Furthermore, we provide convenient classes to be used by the Java ALSM: DatagramSocket and
InetAddress which provide the same API as java.net.DatagramSocket and java.net.InetAddress.

The DatagramSocket provides several standard methods that provide exactly the same API
as defined in the java.net package, such as: bind() to bind a socket to a given IP address and
port, send(): to send a UDP datagram to a remote host, sendTo(): to send a UDP datagram
to a remote host that is determined by a given IP address and a port, and close(): to close the
socket.

4.2 Accessing Message Fields of a Custom Data Type from Java: The
L3Address as an Example and the General Approach

Generally, there is a problem when accessing field of a cMessage or cObject that are of a custom
type (e.g., L3Address). The getField() method works correctly for all data types. However,
the setField() method uses string casting for the handover of data from the Java to the C++
domain and only works for standard types (e.g., int, double, bool).

Therefore, an important development question to be answered is: how to access a field of a
custom type? An example of message fields that have a custom data type are the destination
and source IP addresses within a UDP datagram. Referring to INET, this fields are of type
L3Address and part of, e.g., the UDPSendCommand.

Our approach to access such a field is using its string constructor. Therefore, we utilize a
special syntax in the *.msg file to automatically link the setFied() method to the corresponding

4

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

OMNeT++
(Event Handling)

INET
(Protocol Stack,

Pyhsical Models)

App Layer Models
(INET or Custom)

Java App Layer
Models

jUdpWrapper
(Wrapper for
Socket API)

INET
(Wrapper for
Socket API) C

+
+

Ja
va

(a)

C++ UDP App on StandardHost

UDPBasicApp like IUDPApp

udp like IUDP

networklayer

<physicallayer>

Java UDP App on StandardHost

simple JUdpEchoApp extends
JSimpleModule like IUDPApp

udp like IUDP

networklayer

<physicallayer>

(b)

Figure 1: (a) Basic structure of interface between Java ALSMs and INET (b) Comparison
between UDPBasicApp (INET) and a Java ALSM using the jUDPWrapper.

string constructor. We highlight this as this syntax is only documented in the OMNeT++
source code. Although depending on undocumented features is usually discouraged, using this
syntax in the *.msg file has several benefits. We move the modified *.msg files into the jsimple
project. Therefore, this approach is completely independent of the INET project where the
original *.msg files still remain.

This approach has several benefits. It is lightweight as we do not change any source code
of OMNeT++/INET. Generally, only a few modifications in *.msg files are needed (one mod-
ification for every field). These changes lead to changes in the C++ code generated by the
message compiler (MSGC). Consequently, this approach is easily applicable to other messages
that comprise custom fields. Therefore we considered this approach to be of a general interest
to interface between Java and INET. Moreover, the *.msg file can also be changed in INET, if
future changes shall not be done in two places.

To highlight the functionality we will describe the approach in an example. Fig. 2(a) depicts
the simplified class diagrams of the UDPSendCommand and the L3Address. It is notable that
the UDPSendCommand comprises the fields destAddr and srcAddr of the type L3Address,
which has a string constructor. For the sake of comprehensibility, Fig. 2(b) states the entire
call hierarchy. Note that a call of the Java method cObject.setField() finally calls the C++
method UDPSendCommandDescriptor.setFieldValueAsString(). Fig. 3 depicts the comparison
between the original and the modified *.msg files as well as the generated *.cc files. Using the
expression @editable @fromstring(...) in the *.msg file, leads to access of the field destAddr in
the generated C++ code. As a consequence, the setField() method has access to destAddr now.

4.3 Discussion of Alternative Approaches to Access Fields of a Cus-
tom Data Type from Java

The proposed jUDPWrapper approach demands changes only in the *.msg files. As it is the
successor of several considered approaches, we will discuss the alternatives shortly in the fol-
lowing.

The first alternative approach is writing a C++ interface module for the translation between
string fields and fields of custom types. This approach has the benefits that it is independent of
INET, if the C++ code remains inside the jsimple project. Furthermore, it is transparent for

5

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

UDPControlInfo.msg

UDPSendCommand

L3Address destAddr
int destPort
L3Address srcAddr
int interfaceId

L3Address

uint64 hi

L3Address()

uint64 lo

L3Address(const char *str)
L3Address(const IPv4Address& addr)

L3Address.h/.cc

(a)

cObject.setField("destAddr",…)

SimkernelJNI.cObject_setField()

Java_org_omnetpp_simkernel_SimkernelJNI_cObject_1setField()

omnetpp_cObject_setField()

cClassDescriptor.setFieldValueAsString()

UDPSendCommandDescriptor.setFieldValueAsString()

C
+

+
 Co

d
e

(b)

Figure 2: (a) UML model of UDPControlInfo and L3Address (b) Call hierarchy for setting the
destAddr field of an UDPSendCommand.

INET modules as L3Address fields still exists in the *.msg files. The drawback of this approach
is its complexity. The application layer module would consist of both a Java ALSM and a
C++ converter module. This would be less straightforward for the user than simply using
the IUDPApp interface for Java ALSMs analogue to C++ ALSMs. Moreover, this approach
would be less lightweight. Firstly, it needs a completely new conversion module for every INET
module that needs to be interfaced. Secondly, there would be one “Java clone” for every *.msg
file that hat the same fields as the original *.msg file but this fields have the type string (note
that in our approach it is still possible to only modify the *.msg file in INET). Finally, the
adaption effort would be higher as the code of the C++ interface module must be changed,
if the interface of INETs UDP functionality changes (e.g., if it uses a different type for the
addresses than L3Address).

The second alternative approach is to add an additional string field in the *.msg file and
writing some custom setters that always set the L3Address field when the string field is set and
vice versa (need to be done for every message between INET and Java). Again, this approach
has the benefits that it is independent of INET, if C++ code is inside the jsimple project
and it is transparent for the INET modules as the L3Address fields still exists. However, the
drawbacks are that we need custom C++ setter methods for every message (in contrast, the
current approach only demands changes the *.msg file). Furthermore, there would be two fields
holding the identical information. This would be less straightforward for the user than simply
using the original L3Address fields in the Java code similar to C++ code.

The third approach is to modify the Java extensions so that setField() does not use set-
StringAsValue() but other setters. However, this approach has many drawbacks as it is less
safe. If the field is not set as string, this might lead to run time errors as Java extensions base
on JNI and dynamic linking (in contrast to compile time errors). Consequently, this approach
still needs string casting for safe interpretation of data. Furthermore, it might need changes to
the INET code, if there are no valid setters that can be used by setField().

The fourth approach would be wrapping the entire INET library using SWIG. However, this

6

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

Listing 1: original *.msg

class UDPSendCommand extends

UDPControlInfo{

L3Address destAddr;

int destPort = -1;

// ...

}

Listing 2: modified *.msg

class UDPSendCommand extends

UDPControlInfo{

L3Address destAddr @editable

@fromstring(inet:: L3Address($));

int destPort = -1;

// ...

}

Listing 3: original *.cc

bool UDPSendCommandDescriptor ::

setFieldValueAsString(/* ... */)

const{

// ...

switch (field) {

case 1: pp->setDestPort(

string2long(value)); return

true;

// ...

}}

Listing 4: modified *.cc

bool UDPSendCommandDescriptor ::

setFieldValueAsString(/* ... */)

const{

// ...

switch (field) {

case 0: pp->setDestAddr(inet::

L3Address(value)); return

true;

case 1: pp->setDestPort(

string2long(value)); return

true;

// ...

}}

Figure 3: Comparison between original and modified *.msg files as well as the generated *.cc
files. Accessing the field destAddr is possible using the expression @editable @fromstring(...) in
the *.msg file.

has many drawbacks as many methods would be wrapped and made accessible from Java but
no simulation setup would use the entire INET functionality. Moreover, this approach is very
dependent on the INET version and needs high effort for the adaption to new INET versions.
It demands changes in the SWIG interface files, and maybe the development of C++ wrapper
functions (e.g. for C++ operator overloading that is not supported in Java). Another problem
is that SWIG has issues with namespaces. E.g., two C++ methods Foo1::Bar() and Foo2::Bar()
are wrapped into two similarly named Java methods Bar(). As Bar() is defined multiple times,
the compile process crashes. This can be solved using SWIGs %rename directive, but it would
lead to an unacceptable effort to do this for the entire INET library.

5 Examples and Evaluation

In the following, we will propose several example networks that show the interoperability be-
tween Java ALSMs, INET modules, and C++ ALSMs as well as evaluate their performance.

5.1 C++ INET UDP Example Network

The first example only consist of an Ethernet network and several UDPBasic ALSMs. We
developed this example to show how to use UDPBasic of INET and how to setup a simple

7

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

inet::UDPBasicApp

inet::UDPEchoApp JUdpEchoApp

inet::UDPBasicApp jUDPBasicApp

inet::UDPEchoApp

jUDPBasicApp

JUdpEchoApp

Figure 4: Four different examples used for evaluation of interoperability and performance of
Java and C++ ALSMs. Note that every network comprises two StandardHosts that run the
ALSMs and are connected via an Ethernet switch but this is not shown for the sake of simplicity.

network. To the best of our knowledge, there was no existing example like this before. This
example network serves as basis for the following Java examples as we substituted the C++
modules with Java modules.

5.2 Java INET UDP Example Networks

We provide two example Java ALSMs that can serve as basis for custom Java ALSMs.

• jUDPEchoApp: echoes back received UDP datagrams (similar to UDPEchoApp in INET).

• jUDPBasicApp: sends out UDP datagrams towards a remote host (similar to UDPBasi-
cApp in INET)

Moreover, we provide two example networks to highlight the interoperability with existing
INET UDP applications (e.g., to UDPEchoApp, UDPBasicApp). The first example network
consists of two connected INET StandardHosts. One is running the jUDPEchoApp and one
is running UDPBasicApp from INET in order to show that it is possible to access all fields
from the Java code correctly. The second example network consists of two connected INET
StandardHosts. One is running the jUDPBasicApp and one is running the UDPEchoApp from
INET to show that it is possible set up packets that are understood by the udp module of INET.
Finally, we have one network that consists of both the jUDPBasicApp and jUDPEchoApp.

5.3 Performance Evaluation

In this section, we evaluate the performance of Java ALSMs and compare them to C++ ALSMs.
This is feasible as UDPBasicApp and UDPEchoApp from INET are mostly functionally equiv-
alent to their Java counterparts jUDPEchoApp and jUDPBasicApp. We evaluate the execution
time on the basis of the number of packets echoed between the ALSMs. Fig. 5 depicts the
evaluation results (note that the graphs are logarithmic in the X and Y axis).

As depicted, the execution time of the simulation grows linearly with the number of echoes
packets, which is the expected behavior. For 10 packets and OMNeT++ 5.0, C++ ALSMs
(0.0008 s) are approx. one order of magnitude faster than Java ALSMs (0.0097 s). However,
C++ ALSMs (6.89 s) are approx. twice as fast as Java ALSMs (14.5 s) for 100,000 packets.
We assume that the initialization of the JVM leads to the difference for short simulation runs.
In the debug mode (not depicted) and with 100,000 packets sent, C++ ALSMs (approx. 29 s)
were only approx. 40 % faster than Java ALSMs (approx. 41 s) and in general much slower
than both Java and C++ ALSMs in release mode. For 10 packets and OMNeT++ 5.4, C++

8

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

0.0001

0.001

0.01

0.1

1

10

100

10 100 1,000 10,000 100,000

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

Packets

OMNeT++ 5.0

UDPBasic + UDPEcho UDPBasic + jUDPEcho
jUDPBasic + UDPEcho jUDPBasic + jUDPEcho

(a)

0.001

0.01

0.1

1

10

100

10 100 1,000 10,000 100,000

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

Packets

OMNeT++ 5.4

UDPBasic + UDPEcho UDPBasic + jUDPEcho

jUDPBasic + UDPEcho jUDPBasic + jUDPEcho

(b)

Figure 5: Execution times for different simulation setups (the graphs are logarithmic in the X
and Y axis). a) OMNeT++ 5.0 b) OMNeT++ 5.4

ALSMs (0.0013 s) are approx. three times faster than Java ALSMs (0.0036 s). Again, C++
ALSMs (6.04 s) are approx. twice as fast as Java ALSMs (14.39 s) for 100,000 packets. It
is remarkable that the performance of mixed language setups (one C++ ALSM and one Java
ALSM) reach an intermediate performance.

Concerning the different version of OMNeT++, OMNeT++ 5.0 is faster than OMNeT++
5.4 for short simulation runs, where 10 or 100 packets are echoed. However, OMNeT++ 5.4 is
slightly faster than OMNeT++ in long simulation runs, where 10,000 or 100,000 packets are
echoed.

We simulated every parameter setup 100 times and calculated the mean execution time. As
simulation setup, we used two distinct configurations: OMNeT++ 5.0 with INET 3.4.0 and
OMNeT++ 5.4 with INET 3.6.4. The simulations were conducted using the Cmdenv and the
release mode. As hardware setup we used an i7-3770 with 32 GB RAM and SSD for the host
machine. Four CPU cores and 8 GB RAM where dedicated to the guest VM.

6 Conclusion

In this paper, we contribute to the vision of a combined evaluation using both network simu-
lations and practical testbeds. Our idea is to firstly simulate an approach using a Javal ALSM
and secondly to easily derive a Java prototype implementation. This is of specific interest as
the Java programming language is very suitable for rapid prototyping in practical testbeds.

In order to ease this derivation, we propose the jUDPWrapper, which enables to access
the OMNeT++/INET UDP functionality from Java using a socket-based API and the same
methods as on a real device (e.g., bind(), send()). Previously, the JEO supported only the
access to message fields that have standard data types (e.g., int, double). In order to access
the INET UDP functionality, we propose a generic approach to access message fields that have
a custom type. This is important for the JEO in general as the interface towards INET is
crucial for reusing existing modules and thus reducing the implementation effort. Moreover,
we developed different example networks to evaluate the interoperability between Java ALSMs
and INET or C++ ALSMs and provide examples for Java ALSMs (similar to UDPBasicApp
and UDPEchoApp in INET) to ease the development of custom Java ALSMs. Finally, the

9

Java UDP for OMNeT++ Puttnies, Danielis, Thiele and Timmermann

entire System (OMNeT++, JEO, jUDPWrapper, and examples) is publicly available. These
examples are easy to use as there is no configuration effort needed. Concerning the performance
evaluation, we demonstrate that C++ ALSMs can be approx. twice as fast as Java ALSMs for
long simulation runs in the release mode. However, this speedup is reduced in debug mode or
if a mixed language setup is used (e.g., some C++ ALSMs and some Java ALSMs).

Concerning future work, an extensions of the wrapper functionality towards TCP would be
appreciated. Especially, since RFC8323 suggests to add TCP support to CoAP [3].

References

[1] HOWTO Use Linux Containers to set up virtual networks:
https://www.nsnam.org/wiki/HOWTO Use Linux Containers to set up virtual networks.

[2] INET Framework for OMNeT++/OMNEST - API Reference: https://omnetpp.org/doc/inet/api-
current/neddoc/index.html.

[3] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and B. Raymor. CoAP (Con-
strained Application Protocol) over TCP, TLS, and WebSockets. RFC Editor, 2018.

[4] H. Puttnies, D. Timmermann, and P. Danielis. An approach for precise, scalable, and platform
independent clock synchronization. In 2017 14th IEEE Annual Consumer Communications Net-
working Conference (CCNC), pages 461–466, 2017.

[5] Thomas R. Henderson, Mathieu Lacage, George F. Riley, Craig Dowell, and Joseph Kopena.
Network simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14):527, 2008.

[6] Bjorn Konieczek, Michael Rethfeldt, Frank Golatowski, and Dirk Timmermann. Real-Time Com-
munication for the Internet of Things Using jCoAP. In 2015 IEEE 18th International Symposium
on Real-Time Distributed Computing (ISORC), pages 134–141.

[7] Jereme Lamps, David M. Nicol, and Matthew Caesar. Timekeeper: A lightweight virtual time
system for linux. In Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 179–186, 2014.

[8] M. Rethfeldt, B. Beichler, H. Raddatz, F. Uster, P. Danielis, C. Haubelt, and D. Timmermann.
Mini-Mesh: Practical assessment of a miniaturized IEEE 802.11n/s mesh testbed. In 2018 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–6, 2018.

[9] Henning Puttnies, Peter Danielis, Christian Koch, and Dirk Timmermann. Java Extensions for
OMNeT++. arXiv preprint arXiv:1709.02823, 2017.

[10] Lorenzo Saino, Cosmin Cocora, and George Pavlou. A toolchain for simplifying network simu-
lation setup. In Proceedings of the 6th International ICST Conference on Simulation Tools and
Techniques, pages 82–91, 2013.

[11] Klaus Wehrle, Mesut Günes, and James Gross. Modeling and tools for network simulation. Springer
Science & Business Media, 2010.

10

	Introduction
	Basics
	Java Extensions for OMNeT++ (JEO)
	The Implementation of UDP in OMNeT++/INET

	Related Work
	jUDPWrapper
	Access the OMNeT++/INET UDP Functionality from Java
	Accessing Message Fields of a Custom Data Type from Java: The L3Address as an Example and the General Approach
	Discussion of Alternative Approaches to Access Fields of a Custom Data Type from Java

	Examples and Evaluation
	C++ INET UDP Example Network
	Java INET UDP Example Networks
	Performance Evaluation

	Conclusion

