
EPiC Series in Computing

Volume 64, 2019, Pages 98–108

Proceedings of 28th International Conference
on Software Engineering and Data Engineering

On Architectural Decay Prediction in Real-Time Software

Systems

Aziz Fellah and Ajay Bandi

Northwest Missouri State University
School of Computer Science and Information Systems

Maryville, MO 64468 USA
afellah@nwmissouri.edu ajay@nwmissouri.edu

Abstract

As the number of software applications including the widespread of real-time and em-
bedded systems are constantly increasing and tend to grow in complexity, the architecture
tends to decay over the years, leading to the occurrence of a spectrum of defects and bad
smells (i.e., instances of architectural decay) that are manifested and sustained over time
in a software system’s life cycle. Thus, the implemented system is not compliant to the
specified architecture and such architectural decay becomes an increasing challenge for
the developers. We propose a set of constructive architecture views at different levels of
granularity, which monitor and ensure that the modifications made by developers at the
implementation level are in compliance with those of the different architectural timed-event
elements of real-time systems. Thus, we investigated a set of orthogonal architectural de-
cay paradigms timed-event component decay, timed-event interface decay, timed-event
connector decay and timed-event port decay. All of this has led to predicting, forecasting,
and detecting architectural decay with a greater degree of structure, abstraction tech-
niques, architecture reconstruction; and hence offered a series of potential effectiveness
and enhancement in gaining a deeper understanding of implementation-level bad smells in
real-time systems. Furthermore, to support this research towards an effective architectural
decay prediction and detection geared towards real-time and embedded systems, we inves-
tigated and evaluated the effect of our approach through a real-time Internet of Things
(IoT) case study.

1 Introduction

Software systems continue to evolve and tend to grow in complexity over the years, requiring
long-term sustainability and maintainability at different levels of granularity from the source
code up to the systems‘ design and architecture. Architecture evolution may be manifested
in addressing new emerging requirements, changing technology, capturing and restructuring
a component or for any possible and prominent reasons. However, the dynamic interactions
and complex aspects of any successful software system at different levels of granularity may
eventually lead to architectural decay and violation. Such architectural degeneration manifest

F. Harris, S. Dascalu, S. Sharma and R. Wu (eds.), SEDE 2019 (EPiC Series in Computing, vol. 64),
pp. 98–108

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

themselves in a variety of symptoms that need to be diagnosed and removed. However, the ex-
isting studies and literature have heavily focused on the actual code level to detect architectural
anomalies and problems rather than on the architectural level itself. Studies have shown that
developers who often maintain the software and make changes have no in-depth but only lim-
ited knowledge of the available architecture design of the system. Consequently, an important
aspect of maintaining a software is understanding not only the code but also the architecture.
Thus, we should assess a multifaceted overall operation through a planned series of phases, from
the initial architecture to the target implementation, which in turn can ultimately lead to a new
version of the system. Empirical evidence has been shown in research that architectural-level
decay is a phenomenon that has a negative impact on software systems by causing more decay
than the code-level decay.

The two most predominant architectural phenomena that have a negative impact on software
systems are erosion and drift. Both architectural erosion and drift are caused by variety of
factors. Typically, the erosion problem is caused by the divergence of the software architecture
implementation from the software intended’s architecture, the technological changes (i.e., OS,
hardware, new platforms, programming languages), code complexity, design decisions, time
pressure, conflicting requirements, and unintended cyclic dependency among components. In
contrast, drift arise through different degradation symptoms caused by the anomalies between
the design principles and the architecture styles, multiple responsibilities of a component (i.e.,
interface, circular dependencies), low-coupling components, violation of modularity principles,
and coincidental cohesion. Gradual interweaving of both erosion and drift tend to manifest in
software modules and may contribute to the degeneration of the indented software architecture.
In fact, architectural erosion and drift can impair each other and software modules and their
interactions can become the hub of both erosion and drift symptoms. Thus, translating to a
significant decrease in productivity.

In the rest of this paper, we collectively refer to the pair, architectural erosion and drift, as
architectural decay. In addition, we refer to architectural smells as indicators and symptoms of
architectural decay. The consequences of the architecture smells (i.e., instances architectural
decay) are a spectrum of defects that are manifested in either requirements, design, architecture,
or implementation. Thus, risking further decay in a system. A catalog [9] illustrated a num-
ber of commonly occurring architectural bad smells such as duplicate components, ambiguous
interfaces, cyclic dependencies, and scattered functionality. Instances of such decay negatively
affect maintainability, readability, testability, extensibility, reusability and result in side effects
induced by code changes and modifications [14]. Over the years, such accumulation of archi-
tectural decay would inevitably shorten the life time and evolution of any software system. In
addition, there are several other metrics that contribute to architectural decay and violations
such as the execution of unreachable (dead) code and code clones which are scattered across
the system, hacking, lack of knowledge and deadline constraints in real-time systems. There
has been relatively few studies focusing on foundations and techniques to support architecture
violation perspectives and provide “standardized” architectural-decay metrics.

In this paper and with no comprehensive literature on architectural decay for real-time and
embedded systems, we attempt to pave the way and lay some foundations of architectural decay
for real-time systems, an area of research that has not received much attention and could be
investigated in various directions. In this work, we are not claiming that we developed a general
and conclusive architectural decay framework for real-time and embedded systems, but, and
this paper will add values to existing approaches. The paper describes strategies and knowledge
needed as well as the rational behind during architectural and code decay of real-time systems.
We will shed light on what architects and developers should emphasize when faced with the

99

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

challenging timed constraint tasks of gaining an understanding of the architecture and debug-
ging real-time source code that should be aligned with that of the architects and designers of
the original code. Importantly, the focus of this contribution is on eight set of orthogonal ar-
chitectural decay paradigms for real-time systems that we introduce and refer to as timed-event
component decay, timed-event interface decay, timed-event design decay, timed-event connector
decay, timed-event constraint decay, timed-event port decay, timed-event decay, and timed-event
tools decay. The main reason for performing such a partition is to ensure that we do not carry
and propagate any “architectural bad smells” to the code level which itself contains several sub-
levels and steps. Moreover, we ensure a constructive compliance of the implemented real-time
system with the conformance of the architecture phase. We also envision intermediate states of
the real-time architecture as being represented by interfaces, ports, connectors, clocks, proto-
cols of interaction, tools, and formal domain descriptive languages. Given the conference’s page
limitations of the paper, the focus of our contribution in this paper will be on four orthogonal ar-
chitectural decay paradigms that we introduced earlier. That is, timed-event component decay,
timed-event interface decay, timed-event connector decay, and timed-event port decay. We refer
to the occurrence of smells identified in the previous mentioned architectural decays as com-
ponent, interface decay, connector and port smells. Such architectural decay paradigms would
help developers with comprehending systems functionality, understanding code, interweaving
abstractions and theories, and building a mental model about a piece of software as well as
using effective tools to support architectural, design and implementation decay activities.

With no role in the coding decay aspect, timed-event component smell tasks are grounded
on a set of autonomous functional block units that we refer to as timed-event component
(TeCmp). The coordination and interaction between TeCmp is fully delegated to a special class of
component that we refer to as timed-event connector (TeCnn). These connectors have no relevant
role in the computation aspect, but mediate, coordinate, and control interactions among TeCmp

at different level of granularity.
The structure of the paper is as follows. In Section 2 we highlight some related and prior

work that appeared in literature. Similarly, in Sections 3, 4, and 5 we describe in some details
architectural decay prevention and d throughout timed-event component (TeCmp), timed-event
interface (TePrt) and timed-event connector (TeCnn), and timed-event port (TePrt), respectively.
All four components, TeCmp, TeInt, TeCnn, and TePrt are intrinsically linked and neither of them
can be explored in isolation. The characteristics of the IoT irrigation case study system are
summarized in section 6. We conclude the paper with some potential discussions in section 7.

2 Related Work

It is not uncommon for developers to inherit and maintain code and therefore they must detect
and correct not only the implementation smells in the code but also comprehend the overall
architecture decay and smells of the original system. Software maintenance and reuse of large
and complex systems are costly, difficult time-consuming and effort-intensive task for developers
Software architectural problems and decay (i.e., architectural erosion, decay or smells) are found
at multiple levels within almost every software system. These problems are recurring issues
in software projects which are constantly maintained during their lifetimes to meet rapidly
changing requirements. In this section, we only highlight and outline some prior work and
research challenges that have emerged over the years to capture the concept of architectural
decay. Consequently, several architectural-level decay approaches have been investigated in a
substantial number of empirical studies and research work [8]. Architectural design decisions
and problems arising from architectural erosion has been formally defined and treated in [21].

100

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

This work introduced RecovAr, a technique that uses the project’s available history artifacts
and code repository to recover the architectural design decisions embodied in the system. Yuan
et al. [27] proposed the concept of source code abridgment, an approach to display the source
code in a small space, without compromising the ability of a developer to understand the main
functionality of the code. A set of algorithms to automatically detect instances of multiple
architectural smell types and their relationships has been developed in [14]. Moreover, the
authors described an empirical study and provided consequences of how architectural smells
manifest themselves in a system’s implementation. As part of related work, a survey of broad
techniques and tools to prevent architectural erosion, detect, and repair different types of code-
smell have been studied in [22]. Other foundational research and code evolution experiences
in the area of architectural decay have been both theoretically and practically addressed in
literature, see for example [21], [27], [14], [19], [3], [20], [11], [24], [12]. In order to prevent
architectural violations and extend the life time of software systems, a set of measures have
been investigated in the literature [19], [4], [3], [25] to monitor the architectural decay process.
For example, locate the decay points. Then after pinpointing the violations, perform the reverse
process by rolling back (i.e., refactoring) software decay by removing architecture violations and
replacing them by implementing decisions that are consistent with the intended architecture.
However, coupling the work of the late references with the time dimension shows little or no
evidence of working with real-time systems. Pruning dead and complex code and eliminating
cycles are also examples of refactoring. Other techniques and frameworks to identify and
address architectural decay problems have been illustrated and evaluated in research literature.
Particularly we mention, Domain-Specific Languages (DSL) as an alternative to the general
purpose languages being used in specifying rules to detect architectural degradation. In a
broad sense, DSL is specific to a particular domain and provides a framework to support built-
in abstraction. It is an architectural specification language used during the design phase of a
software development. Other versions of DSL ideally suited to automated industrial projects
such as Structured Control Language (SCL)[10], Dependency Constraint Language (DCL) [23],
LogEn [6], and .QL [2]. Several other language-based architectural tools [15], [13], [17], have
been customized to tackle software architecture complexity for specific domains including Lattix
LDM (Lightweight Dependency Models) [20], IESE SAVE [5], and constructive compliance
checking during development and evolution [19].

3 Architectural Decay Prediction and Detection via

Timed-Event Component

Architecture decay are found at multiple levels of granularity within software systems. For our
work, we want to forecast and prevent this decay, and furthermore identify and correct emerging
architectural bad smells. Thus, we propose an architecture structure, which monitors and ensure
that the modifications made by developers at the implementation level are in compliance with
those of the different architectural elements. In the ontological sense and at the architectural
level, timed-event component (TeCmp) express what we believe to know about components of the
software system and their interrelationships; and it also captures a common understanding of the
application domain. On the other hand and at the semantic level, TeCmp define and disseminate
the meanings and aspects of behavior which are expressed in terms of operations and coding
affiliated with models, entities, attributes, and tools which are in turn associated through the
language at our disposition. In addition, abstraction, modularity and modeling are key factors
that enable the prediction, detection, and forecasting of architectural decay. We propose a

101

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

multitude number of layered abstraction views and models which mimic not only common
modeling architectural designs but also improving maintainability and promoting evolution
in real-time software systems. In the context of this paper, this high layer of abstraction
consists of several constructs such as timed-event components, ports, timed-event connectors,
configurations, and interfaces. Importantly, our focus is still on TeCmp and TeCnn. That is, we
explicitly express TeCmp and TeCnn, two distinguished component classes, at the implementation
level by formally modeling the functionality of TeCnn units and the interaction protocols of TeCnn

as timed-event finite automata [7].
The correctness of real-time and embedded systems depends not only on the logical cor-

rectness of the computation, but also on the time at which these computations had occurred.
Furthermore, the structural decomposition of such systems is embodied in their various com-
ponents and relationship to each other. Thus, there is a need to promote a software space of
design alternatives by putting these pieces together, namely, a collection of application-specific
interfaces, ports, timed-event components, port-connectors, and a set of real-time constraints.
More specifically, interfaces explicitly describe the services that TeCmp provide and the services
that they require from other TeCmp, including their compliance with executions. Ports are the
access points in TeCmp where its interfaces and services can be accessed or where it can access
another TeCmp interface and services. TeCmp can be atomic and/or composed of layered interac-
tions between a collection of TeCmp that interact with each other to provide new functionalities.
TeCnn play a primary role in mediating interactions among TeCmp by providing architectural
interaction using different techniques such as queries. Furthermore, they provide different type
of services such as data transfer, communication protocols and control transfer. Configurations
are a set of association between TeCmp and TeCnn. We assume TeCnn can have at least one TeCmp

coupled at each of its ports performing operation requests (i.e., data and control).
Abstraction and modularity are key factors in timed component-based framework that en-

able the development of re-usable software. They have become an integral part of almost every
software system development and are likely to facilitate software verification. We start with
various and rigorous levels of abstractions and structures that are refined at each stage of the
development before mapping them to programming. For instance in timed-event components
and connectors (TeC&C) model, TeCmp architectural abstractions expose a high-level of the struc-
ture of the system, including TeCmp logical abstractions. Also, TeCmp functional abstractions
reflect the functionality, encapsulates details, and verifies functional properties. On the other
hand, TeCnn data- and control-flow abstractions propose categorization spaces of data types
and control the flow of imposed conditions. TeCnn communication and synchronization abstrac-
tion styles support for instance, protocols and enforce synchronous, asynchronous requests.
TeCmp and TeCnn timing abstractions and properties address several issues of real-time systems
throughout modeling formalism.
Component Architectural’s Abstraction
Abstraction can take many forms and dimensions to serve various purposes in software develop-
ment. In the context of this work, we propose two different levels of abstraction. A horizontal
abstraction that studies component architecture at a very high level of abstraction such as
TeCmp’s functionality, ports, interfaces, and TeCnn. Figure 1 views a prism rectangle box with
special components, TeCmp, ports, TeCnn, interfaces and a “time event clock”.

4 Architectural Decay Prediction and Detection via

Timed-Event Interface
We define three types of interaction decay interfaces, get-interface decay, put-interface decay,
and syn-interface decay where get-interfaces are required and put-interfaces are provided in-

102

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

T
eC

m
p

Ports

Ports

In
te

rf
ac

es

TeCmp

T
eC

m
p

TeCnn

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Comprehensiveness

Abstraction

Figure 1: Architectural dimension views through TeCmp, TeCnn, ports and interfaces.

terfaces by TeCmp. However, there may be complicated by synchronization decay constraints
between two or more interfaces of a single TeCmp, then we complement TeCmp with a third type
of interface that we refer to as syn-interface. Two TeCmp, C1 and C2, may interact synchronously
through syn-interface. Figure 2 shows a timed-event component system with of three timed-
event components, C1, C2, and C3 that communicate through their respective ports, interfaces,
and TConn.

C1C1

C3C3

C2C2

C1C3

syn-interface
C1C2

get-interface

put-interface

Figure 2: A Time-event component-based system with three composed TeCmp, C1, C2, and C3

communicating via encapsulated ports/TeCnn, and interfaces.

Now, we can define the following relations between TeCmp. Let C1 and C2 be two TeCmp, we
define the following TeCmp decay relationships:

1) TeCmp Inheritance Decay

We say two TeCmp, C2 and C1, have an inheritance decay relation if C2 inherits all the properties
of C1. In addition, C1 may have more interaction interfaces and all the inherited interaction

103

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

interfaces of C2 work exactly the same way as those of C1.

2) TeCmp Association Decay

We say two TeCmp, C1 and C2, have an association decay relation if they have at least on
interaction interface.

3) TeCmp Aggregation Decay

We say two TeCmp, C1 and C2, have an aggregation decay relation if C1 is a subset of C2. In
addition, a single TeCmp can be aggregated by several TeCmp. The aggregate TeCmp has all the
interaction interfaces of its TeCmp.

4) TeCmp Composition Decay

A composition is the combination of two or more TeCmp at different levels of abstraction to
achieve modularity and decomposition of TeCmp using various programming languages or com-
position tools as defined by the TeCmp infrastructure. Let C1, C′

1, C2, C′

2 be four TeCmp. Let the
operators ≡ and × be the equivalence operator and composition decay operator in the semantic
context, respectively. Then, if C1 ≡ C′

1 and C2 ≡ C′

2 implies C1 × C2 ≡ C′

1 × C′

2.

5) TeCmp Encapsulation Decay

We say that TeCmp C1 exhibits functional encapsulation decay if C1 hides its details while
exposing a well-defined interface through its ports. Furthermore, embedded TeCmp may occur at
different levels of abstraction and could potentially foresee what we call recursive encapsulation
decay, a fundamental scheme that should be avoided in the architecture.

5 Architectural Decay Prediction and Detection via

Dual Timed-Event Connector and Port

Time Dimension Decay
We leverage the time logic and dimension structures of [26], [1] to describe real-time interactive
or concurrent systems in this work. Importantly, we consider that the time dependent behavior
of any TeCmp is an important aspect of the system’s requirements, enforced by the component
itself and coordinated by TeCnn. To develop a uniform timing framework, we consider the abso-
lute time which could be modeled using a global clock. The concept of time is very important
in real-time and embedded systems. Therefore, we predict that time is an important architec-
tural and design element that most likely to undergo decay. Moreover, we need to predict and
detect decay involving issues and problems attributed to different architectural elements. That
is, timed-event connector (TeCnn) and timed-event port (TePrt).

Let C = {C1, C2, . . . , Cn} ⊆ TeCmp be a finite set of timed-event component instances where
|C| = n. Let Ω = (T , E), where T = {t1, t2, . . . , tk} is a set of points in the time domain
and E = {e1, e2, . . . , ek} is a set of events in the event domain. For convenient, we assume
|T | = |E| = k. Let ≺ be a strict partial order precedence relation over T . Let C1(e1, t1),
C2(e2, t2), and C3(e3, t3) indicate that C1, C2, and C3 are being active on the occurrence of event
ei at time ti, respectively where i=i = 1 . . . , n. We define the timed-event dimension structure
over TeCmp as a tuple in the form C(E , T) that satisfies the following properties:

(i) For all e ∈ E , if C1(e, t1) ≺ C2(e, t2) and C2(e, t2) ≺ C3(e, t3) then C1(e, t1) ≺ C3(e, t3).

(ii) For all e ∈ E and t ∈ T , Ci(ei, ti) 6≺ Ci(e1, ti), i = 1, . . . , n.

(iii) For all e ∈ E and t ∈ T , if C1(e1, t1) ≺ C2(e2, t2) then C2(e2, t2) ⊀ C1(e1, t1).

(vi) For all Ci(e, t) and Cj(e, t), if Ci(e, t) ⊀ Cj(e, t) then Ci and Cj are interpreted as being
concurrent, for all e ∈ E and t ∈ T , and where i, j = 1, . . . , n.

104

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

The external view of the port model is based on the pipe-and-filter architectural style with
consists of a set of data and control port groups. In addition and for various purpose, we
assume there is one extra internal group ports that we refer to as special ports. The data
port group is explicitly divided into input and output data ports. Similarly, the control port
group is explicitly divided into input and output control ports. Both the data and control ports
are provided by default for each port. However, other types of variables such as monitoring
and controlling ports can be an intrinsic part of the internal port and this depending on the
application domain. In the context of this paper, we define a port signature S as follows:

Definition 5.1. A timed-event port signature is a quintuple S = (Event, Type, Data, Control,
T ime), where Event = {In,Out, Spec} and In, Out, Spec are the set of input, output, and
special ports respectively; Type is a finite set of type names, Data and Control are sets of data
and control values, respectively. T ime is a set of point structure of time, modeled by a global
clock. Moreover, (In ∩Out ∩ Spec) = ∅, and the set of data and control values is disjoint.

Now, borrowing from the syntax and semantics of components and connectors views [16, 18],
we formalize the structure of the timed-event component and connector model (TeC&C) model
by not focusing on the interfaces defined for the ports, but rather on the relation between the
different pieces of the TeC&C model.

Definition 5.2. A timed-event component and connector TeC&C model is a sextuple structure
CC = (C, Ĉ, P, S, δp, δt) where

(i) C = {C1, C2, . . . , Cn} ⊆ TeCmp is a finite set of timed event component instances where
|C| = n.

(ii) P = {p1, p2, . . . , pm} is a finite set port instances where |P| = m

(iii) S = {s1, s2, . . . , sm} ⊆ port signatures is a finite set of port signature instances where |S|
= |P| = m.

(iv) Ĉ = {Ĉ1, Ĉ2, . . . , Ĉq} ⊆ TeCnn is a finite set of connector instances which are used to capture

pathways of events (data transfer flow and control flow) between Ci, i = 1 . . . n. (|Ĉ| <<

|C|).

(v) δp: C × P → C × P. That is, δp(Ci, pj) ⊆ P, for all i = 1 . . . n and j = 1 . . .m.

(vi) δt: P × S → P × S. That is, δt(pj, sj) ∈ (P × S), for all j = 1 . . .m.

6 IoT Case Study
We describe a case study that has been conducted and implemented on an IoT irrigation
embedded system which controls a water solenoid valve for controlling a drip irrigation system
using Arduino and Raspberry Pi infrastructure. For the experiment, we selected and expand the
recent IoT project of three of our graduate students as the basis of our case study by running
a variety of experiments to test the proposed theoretical work. The experiment was tested
on several events such as moisture, temperature, and humidity. The system is able to deliver
water to the plants based on the moisture of the soil, temperature and humidity of the day
which are obtained through DHT sensors. Importantly, we use a real-time clock that allows the
system to set the start of the irrigation system based on the moisture and temperature levels.
Furthermore, the system can also start and stop at the specified time intervals to control the
water management. In the experiment, the IoT system is controlled by the real-time status of
the soil moisture, atmospheric conditions, and on the real time clock to adjust the irrigation

105

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

scheduling through time intervals. In this IoT-based system a strong emphasis is put on timed-
event components of the system and empirical evaluation.

In analogical mapping, our abstract model domain of study, timed-event component-based
can be mapped into the real-time target irrigation domain. That is, soil moisture, temperature
and humidity sensors send real data to the microcontroller which is considered as the central
TeC&C architectural information gateway. The microcontroller can be monitored and operated
via WiFi using a Web browser, or managed by the user through a mobile application. The
TeCmp sprinkler controller ensures uniform distribution of water to all parts of that plant and it
is monitored by the microcontroller. In addition, the TeCmp sprinkler may be switched off and on
once the soil moisture sensor has reached the appropriate threshold value. We may consider that
DHT moisture, temperature, humidity sensors are equipped with some ports communicating
with various TeCmp. The coordination and interaction between various TeCmp is fully delegated
to a special class of component that we referred to as TeCnn. These connectors have no relevant
role in the irrigation aspect, but mediate, coordinate, and control interactions among various
TeCmp phontons. In addition, the data of sensors is displayed in a graphical format, analyzed
and visualized by the end-user. Due to the conference’s page limit, the authors may also be
contacted for a full and detailed version of this case study.

7 Conclusion

Our work revealed an apparent lack of foundations in the literature that relate to architectural
decay for real-time and embedded systems. An area of research that has not received much
attention and could be investigated in various directions. We investigated a set of orthogonal
timed-event architectural decay paradigms, timed-event component decay, timed-event inter-
face decay, timed-event connector decay, and timed-event port decay, which led to predicting,
detecting, and forecasting architectural decay with a greater degree of structure, abstraction
techniques, architecture reconstruction; and hence offered a series of potential effectiveness
and enhancement in gaining a deeper understanding of architectural bad smells in real-time
systems. First, we mainly rely on architectural levels and time dimensions which have been
explicitly targeted in our work and how they are clearly manifested in a real-time systems’s
implementation. We have examined the relationships between architectural timed-event com-
ponent, timed-event interface, timed-event connectors, and timed-event ports. Such refinement
and analysis from the architectural-level view to the implementation-level view is significantly
represented in the source code. Furthermore, we have performed an empirical IoT irrigation
case study in order to complement and provide a qualitative base and characterization of our
approach to architectural decay and software evolution.

References

[1] T. Ben-Nun, A. S. Jakobovit, and T. Hoefler. Neural code comprehension: A learnable represen-
tation of code semantics. In Procedings of the 32nd Conference on Neural Information Processing
Systems (NeurIPS), Montreal, Canada, 2018.

[2] O. de Moor. Keynote address: .ql for source code analysis. In Proceedings of the 7th IEEE
International Conference on Source Code Analysis and Manipulation (SCAM), pages 3–14, 2007.

[3] L. de Silva and D. Balasubramaniam. Controlling software architecture erosion: A survey. Journal
of Systems and Software, 85(1):132–151, 2012.

[4] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented taxonomy.
IEEE Transactions on Software Engineering, 35(4):573–591, 2009.

106

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

[5] S. DuszynskiJens, K. Knodel, and M. Lindvall. Save: Software architecture visualization and eval-
uation. In Proceedings of the 13th Euromicro Conference on Software Maintenance and Reengi-
neering, CSMR, pages 167–176, 2009.

[6] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. Defining and continuous checking of
structural program dependencies. In Proceedings of the 30th International Conference on Software
Engineering (ICSE), pages 391–400, 2018.

[7] A. Fellah. Timed event systems and automata. 2011.

[8] J. Garcia, E. Kouroshfar, and S. Malek. Architectural decay prediction from evolutionary history
of software. Technical report, University of California, Irvine, CA, 2018.

[9] J. Garcia, D. Popescu, and G. Edwardsand N. Medvidovic. Toward a catalogue of architectural bad
smells. In Proceedings of the 5th International Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, QoSA ’09, Springer-Verlag, East Stroudsburg, PA
USA, pages 146–162, 2009.

[10] D. Hou and H. J. Hoover. Using scl to specify and check design intent in source code. IEEE
Transactions on Software Engineering, 32(6):404–423, 2006.

[11] Semmle Inc. Semmle’s on-demand analytics of software assets.

[12] J. Knodel, D. Muthig, M. Naab, and M. Lindvall. Static evaluation of software architectures.
In Proceedings of the 10th European Conference on Software Maintenance and Reengineering
(CSMR), pages 167–176, 2006.

[13] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang. The road ahead for architectural
languages. IEEE Software, prePrint:1, 01 2014.

[14] D. Minh Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study of architectural
decay in open-source software. In Proceedings 2018 IEEE International Conference on Software
Architecture (ICSA), pages 176–17609, 2018.

[15] J. Lenhard, M. Blom, and S. Herold. Exploring the suitability of source code metrics for indicating
architectural inconsistencies. Software Quality, 27(1):241–274, 2019.

[16] S. Maoz, N. Pomerantz, and B. Rumpe. Synthesis of component and connector models from
crosscutting views. B. Meyer and L. Baresi and M. Mezini, editors, (ESEC/SIGSOFT FSE),
pages 444–454, 2010.

[17] N. Mendonça, M. T. Valente, L. Passos, and R. Diniz. Static architecture-conformance checking:
An illustrative overview. IEEE Software, 27(5):82–89, 09/10 2010.

[18] S. Maoz nd N. Pomerantz, J. O. Ringert, and R. Shalom. Why is my component and connector
views specification unsatisfiable. In Procedings of ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems, pages 134–144, 2017.

[19] L. Passos, R. Terra, R. Diniz, M.T. Valente, and N. Mendona. Static architecture-conformance
checking: An illustrative overview. IEEE Software, 27(5):82 – 89, 2010.

[20] N. Sangal, E. Jordan, E. Sinha, and V. Jackson. Using dependency models to manage complex
software architecture. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications IEEE International Conference on
Source Code Analysis and Manipulation (ACM), pages 167–176, 2005.

[21] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic. Recovering architectural design
decisions. In 2018 IEEE International Conference on Software Architecture (ICSA), pages 95–
9509, 2018.

[22] L. Silva and D. Balasubramaniam. Controlling software architecture erosion: A survey. Journal
of Systems and Software, 85(1):132–151, 2012.

[23] R. Terra and M. T. Valente. A dependency constraintlanguage to manage object-oriented software
architectures. Software: Practice and Experience, 32(12):1073–1094, 2009.

[24] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha. Recommending refactorings to re-
verse software architecture erosion. In Proceedings of the 16th European Conference on Software

107

On Architectural Decay Prediction in Real-Time Software Systems Fellah and Bandi

Maintenance and Reengineering (CSMR), pages 167–176, 2012.

[25] R. Terra, M.T. Valente†, K. Czarnecki, and R. S. Bigonha. Recommending refactorings to re-
verse software architecture erosion. In Proceedings of the 16th Euromicro Conference on Software
Maintenance and Reengineering, (CSMR), 2012.

[26] S. Yu. The time dimension of computation models. Where Mathematics, Computer Science,
Linguistics and Biology Meet, pages 162–172, 2001.

[27] B. Yuan, V. Murali, and C. Jermaine. Abridging source code. In Proceedings of the ACM on
Programming Languages (OOPSLA), volume 57, page 16 pages, 2017.

108

	Introduction
	Related Work
	Architectural Decay Prediction and Detection viaTimed-Event Component
	Architectural Decay Prediction and Detection viaTimed-Event Interface
	Architectural Decay Prediction and Detection viaDual Timed-Event Connector and Port
	IoT Case Study
	Conclusion

