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Abstract 

Traditionally, surgeons measure lower limb deformities manually by assessing angles 

between axes drawn on full lower limb X-rays connecting specific landmarks. This 

process is considered cumbersome and subject to the surgeon's expertise. Our study aims 

to alleviate the manual detection of landmarks while enhancing the assessment of lower 

limb malalignment through an innovative approach that combines coordinate regression 

and landmark segmentation. While various deep learning solutions exist, our method 

differs by using landmark segmentation to indicate the possible location of the landmarks; 

this information is combined with the X-rays to estimate the position of the landmarks 

via coordinate regression. We named this deep learning architecture segmentation-guided 

regression. 

To address the performance of our proposed approach, we evaluated the detection 

errors for eight landmarks and measured five malalignment metrics. We also compare 

our approach against landmark regression and landmark segmentation. While landmark 

segmentation achieved accurate landmark identification, it faced challenges in 

malalignment measurement due to incorrectly detected landmarks. On the other hand, 

regression had no failed detections but exhibited lower landmark detection accuracy. Our 
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segmentation-guided regression showed a balance, ensuring no incorrect landmark 

detections, improved landmark accuracy, and precise malalignment quantification. 

By encouraging the coordinate regression network to focus on specific areas through 

segmentation guidance, our method positions landmarks more accurately and effectively 

measures malalignment. Consequently, our approach provides surgeons with a reliable 

tool for comprehensive lower limb malalignment assessment, combining the strengths of 

coordinate regression and landmark segmentation. 

1 Introduction 

Lower limb deformities are deviations of the physiological axes that translate to lower limb 

malalignment [1]. When deformities occur in the frontal plane, these are known as varus and valgus 

deviations [1]. Varus deformity increases the risk of progression of medial osteoarthritis (OA), and 

valgus has an equivalent effect on lateral OA [2]. To restore the limb’s natural alignment and ensure 

long-term outcomes after placement of the prostheses, lower limb malalignment (LLM) is quantified 

pre-and post-operatively [3].  

Traditionally, malalignment was quantified by manually drawing physiological axes with specific 

initial and ending landmarks over the lower limb X-rays and measuring the angles formed between 

these axes, as is shown in Figure 1. Such a process is cumbersome and is subject to the expertise of the 

physician performing the measurements. Computer-aided diagnosis systems have recently helped 

physicians outline the axes, but manual positioning still needs to be done [4]. To alleviate this burden, 

deep learning algorithms have been proposed to quantify the malalignment automatically [5]–[8]. 

These methods aim to automatically and accurately detect the landmarks required to draw the axes 

for an LLM test. They employ standard landmark detection techniques: coordinate regression [6], [7] 

or landmark segmentation [5], [8] to achieve such a goal. Compared to previous works, we propose a 

novel approach for landmark detection in full lower limb (FLL) X-rays that combines both 

methodologies: coordinate regression and landmark segmentation. We named our architecture 

segmentation-guided regression (SGR). The results show that our approach balances accuracy and 

robustness, making it suitable for clinical applications such as the LLM test.  

2 Methods 

SGR is a deep learning architecture based on segmentation and regression networks. The 

segmentation network takes a region of interest (ROI) as input and yields a probability map that informs 

which pixels of the image correspond to the landmark’s coordinate position. Subsequently, the obtained 

probability map is combined with the ROI and input to a regression network to improve detection 

accuracy and robustness. Compared to earlier works where independently trained models were 

employed, SGR was trained end-to-end. 

The assessment of SGR consisted of quantifying the detection error of eight different landmarks and 

measuring five malalignment metrics, as shown in Figure 1. To grasp the improvement of our end-to-

end workflow, we contrasted SGR against independent landmark segmentation and coordinate 

regression. We used mean Euclidean distance as a metric to assess the performance of detecting 

landmarks. To evaluate the error between the values of angles using the ground truth landmarks and the 

estimated ones, we employed the mean absolute error (MAE). 

A private dataset from the Hip and Knee Unit consisting of 919 FLL X-rays, including pre- and 

post-operative images, was employed for training and testing the networks. The radiologist annotated 
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the X-rays using the software V7 Darwin*, an online platform that allows the annotation of medical 

images. Labelling consisted of placing bounding boxes surrounding the desired joint to detect an ROI. 

Next, landmarks were annotated on each leg side, following the definitions of Figure 1. Due to 

commercial restrictions, supporting data and annotations are unavailable for sharing. 

All the models were developed using Python v3 8.6. The deep learning library employed was 

Pytorch v1.7.1 and its sub-library Torchvision v0.8.2. The neural networks were trained using an Nvidia 

Tesla P100 GPU with 16GB of memory. 

 

 
Figure 1: Axes (mechanical in black and anatomical in red) and angles measured in a malalignment test.  

(i) mLDFA: Angle measured between the axis that runs from the head of the femur centre to the centre of the 

knee (1→2) and the line that runs tangent to the femoral condyles (3→4). mMPTA: Angle formed between the 

axis that connects the centre of the knee and the centre of the ankle (2→7) and the tangent line that joins the 

tibial plateaus (5→6). (ii) FVA: Angle between the axis that connects the head of the femur centre and the centre 

of the knee (1→2) and the axis that runs from the middle of the diaphysis to the centre of the knee (8→2). HKA: 

Angle between the extended axis that joins the head of the femur centre and the centre of the knee (1→2), and 

the axis formed by connecting the centre of the knee and the ankle (2→7). (iii) MAD: Distance from the centre 

of the knee (2) to the axis that connects the head of the femur centre and the centre of the ankle (1→7). (iv) 

Evaluation of the deformity based on the MAD and the position of the axis (1→7) with respect to the centre of 

the knee. Varus and valgus deformities are based on the distance between the centre of the knee and the axis 

that connects the head of the femur to the centre of the ankle. Definitions taken from [1]. 

3 Results 

Table I compares the three methods using Euclidean distance errors between ground truth and 

estimated landmarks. Landmark segmentation accurately detects hip and knee landmarks, while SGR 

performs better at the ankle joint. Overall, SGR outperforms pure regression with lower detection errors. 

 
* https://www.v7labs.com/ 
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With a 4 mm distance threshold for successful detection, SGR detects 83.83% of the landmarks below 

this boundary, landmark segmentation 86.57%, and pure regression achieves 79.28%. 

To assess landmark detection's impact on lower limb malalignment measurements, an analysis 

checked if all the essential landmarks for drawing physiological axes on both legs were detected in X-

rays. A successful analysis required detecting the complete set of landmarks; if a landmark was missing 

or an extra one was detected in any ROI, the analysis was deemed unsuccessful. Figure 2 contrasts the 

three methods, based on the previously described evaluation, with regard to the mean absolute error in 

each malalignment metric. 

Figure 2 shows that landmark segmentation achieves malalignment errors equal to or below SGR 

and pure regression. However, landmark segmentation analyses only 86% of the images satisfactorily. 

In contrast, SGR and pure regression successfully analyse the complete set of X-rays at the cost of less 

accuracy. SGR has the lowest errors, surpassing coordinate regression across all five malalignment 

metrics.  

Moreover, SGR correctly classifies all test X-rays as healthy or pathological based on the definition 

for identifying varus and valgus deformities, see Figure 1. When labelled as pathological, the deformity 

side and type (varus or valgus) are accurately classified, with precision, recall, and accuracy equal to 

1.0. Since SGR can robustly and accurately detect all the required landmarks to measure lower limb 

malalignment, we compared it to what is currently reported in the literature. Table II compares SGR to 

prior literature, highlighting its quality compared to the current state-of-the-art. SGR outperforms 

Nguyen et al. [6] across all metrics, with lower HKA errors than other studies. 

 
Method HF R-FL L-FL R-TL L-TL CK R-AL L-AL 

Regression 
2.03 

(1.48) 

3.39 

(2.88) 

2.95 

(2.26) 

3.71 

(2.87) 

3.40 

(2.50) 

1.81 

(1.79) 

2.59 

(2.02) 

2.83 

(2.43) 

Landmark 

Segmentation 

1.21 

(1.06) 

2.53 

(2.26) 

2.40 

(1.56) 

2.41 

(2.88) 

2.38 

(2.17) 

0.88 

(2.61) 

2.52 

(4.08) 

2.79 

(3.72) 

SGR 
1.55 

(1.08) 

3.03 

(2.71) 

2.49 

(1.87) 

3.00 

(2.42) 

3.30 

(2.43) 

1.34 

(1.43) 

2.42 

(1.93) 

2.54 

(2.24) 

 Table I. Mean Euclidean (standard deviation) distance errors [mm] on each landmark for each addressed 

approach. The best metrics are represented using bold-faced numbers; the second-best metrics are represented via 

underlined numbers.  Notes: HF: head of the femur, R-FL: right femur landmark, L-FL: left femur landmark, R-

TL: right tibia landmark, L-TL: left tibial landmark, CK: centre of the knee, R-AL: right ankle landmark, L-AL: left 

ankle landmark. 
  

Model MAD1 [mm] mLDFA1 [°] mMPTA1 [°] FVA1 [°] HKA1 [°] HKA2 [°] 

Ours 1.37 ± 1.63 0.73 ± 0.69 1.09 ± 1.02 0.19 ± 0.19 0.34 ± 0.43 -0.06 ± 0.55 

Pei et al. [5] - - - - - -0.49 ± 0.75 

Tack et al. [7]* 
- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.09 ± 0.73 

0.18 ± 0.67 

Nguyen et al. [6]** 
- 

- 

0.90 ± 0.80 

1.14 ± 0.89 

1.15 ± 0.94 

1.03 ± 0.67 

0.64 ± 0.50 

1.30 ± 0.57 

0.67 ± 0.42 

0.54 ± 0.49 

- 

-0.40 ± 0.68 

Table II. Comparison of the segmentation-guided regression to what is reported in the literature. 

Malalignment metrics are represented in the form of error value ± standard deviation. Notes: 1 mean 

absolute error, 2 mean error, * two datasets were employed, ** top corresponds to the right leg and bottom 

to the left leg measurements.  
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Figure 2: Robustness and accuracy evaluation of the three methods. On the y-axis, MAE between the values 

obtained using the estimated landmark position and the ground truth coordinates. On the x-axis, percentage of 

images where landmark detection failed. In addition, a bar plot indicating the percentage of correctly analysed 

images is given. Landmark segmentation failed to analyse 14% of the images, while SGR and coordinate 

regression analysed the complete 100% of them. 

4 Discussion 

We introduced segmentation-guided regression (SGR), a novel landmark detection method, and 

evaluated its performance in automatically measuring malalignment on full lower limb X-rays. 

Compared to landmark segmentation, SGR yields less precise detections and metrics. However, due to 

its design incorporating a coordinate regression network, our proposed method consistently detects the 

exact number of landmarks, ensuring reliable malalignment measurement. When comparing SGR to 

pure regression, our technique demonstrates more accurate metrics. This is attributed to our 

methodology incorporating a probability map before regression, providing information about potential 

landmark locations to the network, and improving final landmark estimations. 

In contrast to other methods, our approach demonstrates similar or superior results in lower limb 

malalignment. SGR yields a balance between accuracy and robustness that is more valuable for clinical 

applications. Therefore, we view our approach as innovative, potentially enhancing surgical decision-

making and optimising postoperative outcomes by providing surgeons with a comprehensive automated 

tool for assessing lower limb malalignment.  
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