
A Design Space and its Patterns:
Modelling 2phase Asynchronous Pipelines

Graham Birtwistle1

and Kenneth S. Stevens2

1 Sheffield University, Yorkshire, UK
graham@dcs.sheffield.ac.uk

2 University of Utah, Salt Lake City, USA
kstevens@ece.utah.edu

Abstract

We present a systematic way of studying state machine based design spaces and apply
it to the study of asynchronous pipelines. Starting with the specification of the most
concurrent behaviour as a state machine, all possible valid smaller designs may be generated
by systematically removing structured patterns of output states (L cuts) and input states
(R cuts). Taking the cartesian product of cuts L×R yields the complete design space
which may then be partitioned according to well understood design styles. In this paper we
extend previous results by studying mixed asynchronous pipelines of which homogeneous
behaviours form a subset. The approach is presented using the much smaller 2phase setting
(3×6) but the insights and structures revealed carry over to full 4phase designs (35×140).
We present a complete overview of mixed 2phase linear pipeline behaviours; show how
their structuring L cuts and R cuts relate; characterise the behaviours of linear pipelines
in terms of these cuts for any depth; and show how the much larger R mixed behaviour
patterns can be calculated from knowledge of the L behaviour patterns. Applications of
the theory cover mixed linear pipeline and ring behaviours and the automatic generation
of quality circuits from our specifications.

1 Setting and approach

This work arose from our long standing interest in designing, specifying and building asyn-
chronous microprocessors [2, 4, 5, 7, 21, 38, 39]. In the first stage of design development, our
practice is to concentrate solely upon control signals and the ways in which they can interleave.
This enables us to check that each subsystem and its compositions work together harmoniously
(are live, deadlock free, preserve essential cyclic properties, ...) before extending the model
towards data movements and calculations.

The computational core of a microprocessor lies in its pipelined datapath. (At the control
signal level, combinational circuits minimise down and can be considered mere delays.) When
we experimented with structured pipelines of differing widths and depths, they minimised down
to an observationally equivalent linear pipeline structure of the same depth, but usually one
not composed from the controller used in its design. This aroused our curiosity.

Our notation of choice has been CCS, Milner’s Calculus of Communicating Systems [1, 32].
CCS is a system description language based upon communicating agents (state machines). Mil-
ner noticed that concurrent processes have an algebraic structure: given processes P and Q,
we can construct new processes combining P and Q sequentially (example in Section 2.2) or
in parallel (example in Section 2.3). The resulting composition will be a new process (in our
case, system of circuits) whose behaviour depends upon those of P and of Q and of their com-
bining operator. Further CCS provides just one inter-process communication mechanism which
corresponds directly to the asynchronous circuit handshake. CCS has a number of pertinent at-
tributes: it models arbitrary delays and interleaving behaviours which makes it straightforward
to capture the signal level behaviour of asynchronous circuits and systems; and it has a simple
and well understood formal semantics to support reasoning about designs, their properties,

34 A. Voronkov, M. Korovina (eds.), HOWARD-60, pp. 34–

A Design Space and its Patterns Birtwistle, Stevens

and their equivalences. Additionally CCS has a reliable public domain tool support, the CWB
(Concurrency Workbench [33]), with built-in minimisation to the smallest equivalent state ma-
chine and an implementation of the very powerful modal-µ property checking language—see
Stirling’s sterling account [41, Chapter 6, pages 141-153].

1.1 Previous Work and its Approach

Our previous work [6, 8, 34] has been concerned with mainly 4phase asynchronous homogeneous
linear and structured parallel pipelines. The asynchronous community has made great efforts
to present circuits clearly [9, 14, 16, 18, 19, 22, 23, 24, 25, 26, 27, 35, 36, 42, 44, 46]. This body
of work enabled us to model real practical designs rather than experiment with a few idealised
ones and kept us grounded. Importantly, the corpus was large to guide our research directions.
Initial Survey. It is common practice within the community to specify designs graphically
(STG [13, 37, 45]) or algebraically (CSP [11, 12, 26, 28, 29, 30, 31]) at the signal level—our
chosen level of abstraction. Some forty published 4phase designs were translated from their orig-
inal presentations into CCS. STG specifications include internal state variables which assist the
favoured CAD tool Petrify [15] to target a specific implementation by delaying outgoing signals
until an internal state has been reached. We first mapped all these signals into CCS and then,
by simply hiding any explicit mention of an STG internal variable name, retained its inherent
constraints as extra arbitrary length internal delays. In this way, our CCS model characterizes
the signal interleaving possibilities relevant to pipelining. To emphasize this distinction, we
call our minimised CCS state machine descriptions shapes. Shapes operate at the same level of
abstraction as STGs and our specifications lead directly to circuits in silicon [34]. Brunvand,
Lines and Martin have used CSP equally abstractly to generate silicon [12, 26, 31, 44].
Generalisation. The forty 4phase designs surveyed in the published literature gave rise to
just 18 distinct shapes. Since the behaviour of each and every shape is expressed solely in terms
of external control signals, shape behaviours could then be compared, contrasted, and ordered.
From comparison of these shapes, we noted a mathematically ideal shape, max 1, from which
all published designs could be defined by removing states. We claim that max 1 is the most
concurrent possible shape. In support of this claim, the union of published shapes is precisely
max 1. This led to generating all possible subshapes by systematically cutting away states from
max 1. This is easiest to carry out in an algebraic notation—hence the aptness of CCS.

1.2 Intuition: MAX and its cutaways.

Consider the FSM MAX shown at the top of Figure 1. MAX has 20 states arranged in 5 rows
and 4 columns. The initial state is marked START and the terminal state DONE. Informally,
the protocol is to take us from the start state to the done state by making only forward → or
downward ↓ moves. To save clutter we have omitted arrowheads and labels: horizontal arcs run

MAX
START

DONE
Col cut: L321

321

Shape: L321.R2100

Row cut: R2100

2
1
0
0

Figure 1: MAX and its cutaways

35

A Design Space and its Patterns Birtwistle, Stevens

to the right; vertical arrows downwards. The extreme routes are path DA: down 4 arcs, then
across 3 arcs and path AD: across 3 arcs, then down 4 arcs. The middle section of Figure 1
divides the cut possibilities into two regions shown with shaded backgrounds. On the left, we
have a 4×3 region with the specific column cut L321 displayed. Starting at the bottom of each
column, L321 cuts away upwards: 3 states from column 1, 2 states from column 2, and 1 state
from column 3—plus of course their connecting arcs. Clearly we should never cut away the
start state or the done state. On the right, we have a 4×3 region with the specific row cut
R2100 displayed. Starting at the right hand end of each row, R2100 cuts away leftwards 2 states
from row 1, 1 from row 2, and 0 from rows 3 and 4. The typical sub-design from MAX will
have cutaways on the left and on the right, for example L321.R2100 at the bottom of Figure 1.
Liveness. As illustrated in Figure 2, the choice of indices in Labc or Rwxyz is not entirely free.
In this figure, the START/DONE states are marked , cut states by on the left and on the
right, and ’dead ends’ by •.

L010

Dead ends
START

DONE•
R0120

••• START

DONE

L220.R2220

Figure 2: Non-valid cuts of classes 2 and 3

1. Range: clearly 0 ≤ a,b,c ≤ 4; and 0 ≤ w,x,y,z ≤ 3.
2. No dead-end states: as would be caused by cuts L010 and R0120 on the left in Figure 2.

For L010, the state marked • in row 5 and column 1 is a dead-end—reachable but isolated.
The appropriate cut choice here is L110. For R0120 the 3 states marked • are also dead
ends. The appropriate cut choice here is R2220.
Constraints to remove such options are: Labc: a ≥ b ≥ c and Rwxyz: w ≥ x ≥ y ≥ z

3. Liveness: Each shape Labc.Rwxyz represents a viable sub-design provided that it is live.
If its L- and R-cuts abut or a fortiori overlap then the shape will not be live—it will not
be able to fulfill the protocol and move from the start state to the done state, as with
L220.R2222 on the right in Figure 2 where the cuts abut. Liveness can be calculated from
the L.cut and R.cut indices.

Design space. The sets of all allowable L.cuts, L = { L000, L001, L002,..., L444 } and the
set of all allowable R.cuts, R = { R0000, R0001, R0002, ..., R3333 }, form regular and elegant
lattices and enable us to compare and order the shapes (sub-designs) of MAX . Applying all
combinations of left and right cuts L×R over MAX yields its complete space design space.

L×RL000 → L444

DESIGN SPACE

R
0
0
0
0

→

R
3
3
3
3

L000.R0000

L000.R3333

L444.R0000

L444.R3333

Figure 3: MAX design space

This permits exhaustive examination of circuit design possibilities and their pipeline behaviours.

36

A Design Space and its Patterns Birtwistle, Stevens

1.3 Contributions

In this paper we apply these ideas to studying and predicting the behaviours of mixed pipelines.
Homogeneous results drop out as a subset in this study. Mixed pipelines enjoy a huge increase
in variety over homogeneous pipelines, but this very generality has uncovered unifying results
with practical applications. In particular, our previous R.cut sets [8, 34] are closed under
composition for homogeneous pipelines, but not for mixed. A simple modification has led to
two key discoveries:

1. A unique notation for pipelines of any depth in terms of the closed set of shape cutaways.

2. The relation between the L.cut set and the R.cut set. We already had a neat lattice for
L.cuts as a planar wedge. We can now restructure the closed R.cuts into (2 for 2phase, 4
for 4phase) related planar wedges each of which is isomorphic to the L wedge. This has
a practical application when we come to predict pipeline behaviours, since experiments
show that if we know how a L.cut behaves we can calculate how a related R.cut behaves.

The full 4phase design space has 35 L.cuts and 140 R.cuts; its untimed sub-space (delay in-
sensitive and speed independent shapes only) has 10 L.cuts and 20 R.cuts. Evaluating their
design spaces for just pipelines of depth 2 would entail 24.01 million and 160 thousand experi-
ments respectively as against just 324 for 2phase. Accordingly we present exhaustive practical
results for the 3×6 2phase design style. Work in progress confirms that our 2phase insights and
structures carry over into the above 4phase design spaces (see example in Section 5.4).

1.4 Structure of the paper

In the remaining sections in this paper: Section 2 introduce the CCS notation via examples
leading to the model of data transmission which underlies pipeline behaviours. Section 3 ex-
plains the design and implementation of Furber’s classic 2phase pipeline stage (which we call
max 1) using simple building blocks expressed in CCS. It also covers pipeline models constructed
from max 1 and discusses their specification. Section 4 covers the structure of cuts, their lat-
tices, how they are related, and how they define the family of subdesigns from max 1. Section 5
presents new results on mixed pipelines, uses lattices to uncover their pipeline structures and
pipelined behaviours; and predicts the behaviours of mixed pipelines and rings. Section 6 gives
applications to circuit design. Section 7 is an overview and summary.

2 CCS as a System Description Language

CCS describes objects (agents, circuits, processes) by defining the states they can occupy and
the actions that cause them to move from state and to another state or back to the same state.
In this section we give an introduction to defining individual objects in CCS, how objects
communicate via handshakes, and give a simple model of 2phase bundled data transmission
protocol as a lead in to asynchronous modelling.

2.1 Individual objects

0: The simplest object in CCS is 0 which can do nothing; it cannot receive or send signals, nor
has it any local actions. It is said to be deadlocked.
Prefixing: Sequential objects can be built from 0 by prefixing actions which are executed in
order. For example, Match1 = strike.burn.0 describes an object that be struck, then burns,
whereupon it deadlocks (is spent). The separating dot . indicates an arbitrary delay and may
be read as then some time later. Except for the deadlocked state, 0, states always start with

37

A Design Space and its Patterns Birtwistle, Stevens

upper case letters, e.g. Match1 . Actions always start with lower case letters. We distinguish
between input actions (e.g. strike) and output actions (e.g. burn) which are over-barred.
Choice: Not all objects are sequential. Many have choices of action stream. For example,
Match2 = strike.(burn.0 + fail.Match2 + dead.0) describes a match that after being struck has
3 distinct behavioural options: it may burn and become spent or it may fail to light whereupon
it may choose to repeat the action repertoire from the beginning, or (perhaps the match head
has dropped off) is thrown away.

Match1

0

?

?

strike

burn

Match2

0

? 6

? ?

strike fail

burn dead

Figure 4: State machines for Match1 and Match2

Figure 4 shows state machine descriptions of the linear Match1 and the cyclic Match2 . Notice
the tight correspondences with their CCS specifications. We have made fail and dead local trace
actions. Trace variables are useful documentation aids at key points and can be invaluable
when property checking. We always show them in serif font.

2.2 Sequential Composition

Suppose we are given two objects, FST and SND , each of which upon receiving a request,
carries out a local task, emits an acknowledgement and is then ready to repeat its cycle. We
wish to allow FST and SND to cooperate in series: having completed a task1, FST hands over
for SND to finish off by carrying out a task2. This communication is arranged by connecting
the output acknowledgement of FST to the input request of SND as in Figure 5.

FST = rF .task1.aF .FST SND = rS .task2.aS .SND

FST SND
hs

rF hs hs aS

Figure 5: FS : handshake communication

For two objects to communicate via a direct handshake they must:

1. Agree on a common name for their communication line, here hs

2. Rename the sender’s action to match the line name, that is in FST aF → hs

3. Rename the receiver’s action to match the line name, that is in SND rS → hs

Table 1 defines FS as the parallel composition of FST and SND . It first lists the constituent
objects, parenthesised and with separator |, here (FST | SND); followed by its curly bracketed
handshake lines (in general they are separated by commas, but here) \ { hs }. This specification
has been embellished by m arrows. They are not part of formal CCS—here they highlight the
handshake.

38

A Design Space and its Patterns Birtwistle, Stevens

FST = rF . task1 . hs . FST
m

SND = hs . task2 . aS . SND

FS = (FST | SND) \ { hs }

Table 1: Specification of FS

2.2.1 Communicating via handshakes

To explain the mechanics of handshaking, we unroll each of the definitions of FST and SND in
Table 1 up to their third handshake:

FST : rF . task1 . hs . rF . task1 . hs . rF . task1 . hs
m m m

SND : hs . task2 . aS . hs . task2 . aS . hs

Each thread in the composition is allowed to carry out its sequence of non-handshaking actions
freely up to, but not past, a hs or hs signal. Thus SND is initially blocked with its handshake
action hs uncovered, but FST may execute its initial rF and then its task1 action until it
uncovers the companion handshake action hs. The situation is now:

FST : hs . rF . task1 . hs . rF . task1 . hs
m m . m

SND : hs . task2 . aS . hs . task2 . aS . hs

For handshakes and only handshakes, both cooperating partners move on through their own
handshake action at the same time. This special internal or not-observable handshake action is
designated a τ -action. After the τ , FST is free to start a fresh cycle and SND may proceed to
get on with its local task2 action. These actions are interleaved until the next handshake forces
the second rendezvous.

FST : rF . task1 . hs . rF . task1 . hs
m . m

SND : task2 . aS . hs . task2 . aS . hs

Here is an equivalent specification for the FS of Table 1 given monolithically—expressed in
terms of just . and +.

Y11 = rF .Y12
Y12 = task1.Y13
Y13 = τ .Y14
Y14 = rF .Y15 + task2.Y24 Y24 = rF .Y25 + aS .Y11
Y15 = task1.Y16 + task2.Y25 Y25 = task1.Y26 + aS .Y12
Y16 = task2.Y26 Y26 = aS .Y13

Table 2: Monolithic specification of FS

After the τ handshake, both FST and SND can move on in their own good time. One extreme
possibility is that FST makes the next two moves, rF and then task1, but it is then stuck
awaiting its handshake partner. There it remains until SND has completed its task2 and aS
actions. Only then can the next handshake take place. The other extreme possibility is that
FST is stuck, and SND makes its two moves before FST makes an rF move. The specification
covers all possible interleaving patterns between these two extremes. This is easier to see from
the monolithic specification 2.

39

A Design Space and its Patterns Birtwistle, Stevens

2.2.2 Minimisation

The state diagram for a minimised specification of FS is:

�� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� ��

task2 task2 task2

? ? ?

��

� �
?

��

� �
?

��

� �
?

aS

- - - -
rF rFtask1 task1

- -
rF task1

Figure 6: State graph of minimised FS

This is the smallest (in state size) definition of FS which is observably equivalent to the specifica-
tion given in Table 1. Compared with the monolithic specification in Table 2, the non-observable
τ action is deleted. The definition of state Y13 is deleted and remaining references to it are
updated to Y14 .

Coda. For all but the simplest machines, it usually pays to define an object in terms of
its interfaces (as we did here with FST and SND) and then constrain them. This composed
specification will be the easiest to reason about, and once satisfied, the CWB will produce its
minimised form automatically.

We have now given all the syntax and (informal) semantics for CCS that we need: the
operators . + |, hiding, and handshaking. This enables us to deal with asynchronous hardware
communication signals in appropriate detail. As with all state machine based descriptions,
incorporating data would, of course, entail an exponential growth in state size.

2.3 2phase Bundled Data Transmission

We now present a simple model consisting of an output O and an input I cooperating via the
2phase protocol. It forms the core of how data gets transmitted down an asynchronous pipeline
(see next section) and is an important first step in understanding the much used 2phase bundled
data protocol.

O I

r

a

-

�

r

a

r

a

Figure 7: Transmitting bundled data between processes

Suppose that O and I are connected by a bus down which data values are transmitted in
sequence from O to I . r/a are request/acknowledge communication wires respectively which
ensure the safety of each transmission. Once O has loaded the next data value onto the bus, it
sends a signal on line r . On receipt of which, I understands that a fresh data value is available
and copies it locally from the bus. Once this data capture is complete, I signals on a to inform
O that it can start the next transaction and safely overwrite the bus with the next data value.
Using pD and gD as trace variables, the CCS description of this system is:

40

A Design Space and its Patterns Birtwistle, Stevens

O = pD . r . a . O
I = r . gD . a . I

OI = (O | I) \ { r , a }

Table 3: Specification of OI

Commentary on Table 3

pD: O puts fresh data on the bus linking O to I .
r⇔r : When the data is stable, O sends a request signal on communication line r to I . O now

passively awaits an acknowledgement from I .
gD: On receipt of the request signal on r , I reads the data from the bus.
a⇔a: Once the data is captured, I sends an acknowledgement signal on line a back to O and

passively awaits the next request

On receipt of a, O knows that the current data value has been safely passed to I . O may
now actively prepare the next data value and place it on the bus. In Table 4 we unroll the
specification of SR through the specific transaction.

Transaction 1 • Transaction 2 •

O = pD . r↑ . a↑ • pD . r↓ . a↓ •
m m m m

I = r↑ . gD . a↑ • r↓ . gD . a↓ •

Table 4: Unrolling the specification of OI through 2 iterations

It is easy to show formally that OI is observationally equivalent to both specifications below:

OI2 = pD . τ . gD . τ . OI2

OI3 = pD . gD . OI3

which confirm that pD and gD alternate. Reading ≺ as precedes, pDk ≺ gDk means that I always
reads fresh data; gDk ≺ pDk+1 means that O cannot overwrite unread data. So the protocol is
data independent and safe. As a final remark, transaction phases are identical in the 2phase
protocol, so there is no need to indicate parity by ↑ and ↓.

2.3.1 4phase Protocol

In the equivalent 4phase version of this protocol, each signal goes up and down once per trans-
action. Hence its alternative name: Return To Zero, or RTZ.

Transaction 1 •

O = pD1 . r↑ . a↑ . r↓ . a↓ •
m m m m

I = r↑ . gD1 . a↑ . r↓ . a↓ •

At first sight this seems a waste of energy and time compared to 2phase. But 4phase hardware
circuits may be simpler than 2phase and the down phase of one transaction may overlap with
the up phase of its successor. The increased variety presents greater opportunities and greater
challenges for engineers. It also gives rise to surprisingly larger design spaces.

41

A Design Space and its Patterns Birtwistle, Stevens

2.4 Aptness of CCS for Circuits at the Control Signal Level

In later sections we will apply our algebraic approach to specifying the compositional properties
of both homogeneous and mixed linear asynchronous pipeline and ring structures. We will
explain how to describe basic asynchronous circuits as objects (state machines), the standard
handshake method of synchronising circuits, how to compose cooperating circuits into systems,
all the while using the 2phase design communication protocol and modelling in CCS. Which
begs the question ‘How well does CCS capture asynchronous hardware?’.

Circuit description. It is standard practice to describe a circuit as an asynchronous state
machine. This is exactly the CCS model for describing an object.

(i) Black box view (ii) FSM view (iii) CCS view

M2

a

b

c M2

-

-

�

a

b

c M2 = a.c.M2 + b.c.M2

Figure 8: Black box, FSM and CCS views of M2

Signals as actions. Cooperating circuits must agree upon common communication lines; one
sending and one receiving per line. Signals are simply changes in voltage level. We map signals
to their line names: x/x will be interpreted as signals sent/received on line x . This is exactly
the CCS model for communicating via handshakes.

x - x

x

x

x

x

Voltage level: 0 → 1

Voltage level: 1 → 0

Handshake: Signal x ⇔ x

Handshake: Signal x ⇔ x

Figure 9: 2phase signal = change in voltage level, either up or down

System description. Hardware systems are built by wiring together the communication lines
of their constituent circuits appropriately. This is exactly the CCS model for building systems
hierarchically.

C1 C2

x

y

-

-

-

-

r1

r2

a1

a2

-

�

x

y

x

y
SYS = (C1 | C2) \ { x , y }

The handshakes are unobservable internal actions leaving the specification of SYS expressed
solely in terms of the interleaving possibilities for its inputs and outputs: r1, r2, a1 and a2.

42

A Design Space and its Patterns Birtwistle, Stevens

2phase protocol. In asynchronous systems, there are no coordinating clocks. In 2phase
design, each circuit is passive until awoken by a request signal (or possibly several). When it
has finished its current task, it will send a completion signal (or possibly several) and then fall
passive again awaiting its next request. This is modelled in CCS using the req/ack protocol as
in the 2phase data transmission example of Section 2.3.

3 Modelling asynchronous pipelines in CCS

In this section we describe Furber’s classic implementation of a 2phase pipeline stage [20] and
use this description to specify a suitable abstraction in CCS. Under common assumptions, we
argue that this is the most concurrent behaviour achievable. We then recount experiments with
this stage when pipelined and report their resulting structures and patterns. These patterns
form the basis for specifying pipelines in the next sections.

STAGE

LATCH

CONTROLLER

dIN dOUT

6
?

rL aL

-

�

-

�

ir

ia

or

oa

Figure 10: Latch and Controller interplay

The basic pipeline building block is the stage which is the composition of a latch and its
controller as shown in Figure 10. The latch has two safe states: open in which it will admit the
fresh data value pending on dIN and closed when it holds its current value steady both internally
and on dOUT . The controller is responsible for the safety of the open and close operations.
Signal lines ir/ia enable Input request/acknowledge communication with a source on the left;
signal lines or/oa enable Output request/acknowledge communication with a successor on the
right. Linear pipelines are built by abutment with ork wired to irk+1, dOUT k to dIN k+1, and
iak+1 to oak (see Figure 11).

ST1 ST2 STk STk′

LPk ST

x

y

or

oa

ir

ia

or

oa

ir

ia

Figure 11: Building linear pipelines by abutment

43

A Design Space and its Patterns Birtwistle, Stevens

The construction of such linear pipelines has the straightforward recursive definition:

LP1(ir,ia,or,oa) = ST(ir,ia,or,oa)
LPk+1(ir,ia,or,oa) = (LPk(ir,ia,x,y) | ST(x,y,or,oa)) \ { x , y }

with the request and acknowledge lines between LPk and LPk+1 being renamed x and y
respectively and hidden (syntactically \ { x , y }) in the definition of LPk+1 so that no other
circuit can access them.

3.1 Components for Building a Furber Stage

In this subsection we give signal level specifications of a latch and the basic circuits required to
build a specific 2phase pipeline stage presented in Furber [20].

3.1.1 The Latch Model

The latch model in Figure 12 has an input bus dIN and output dOUT and two control lines
rL and aL which allow it to be opened and closed.

rL = F

aL = F

CLOSEDdIN dOUT

rL = T

aL = T

OPENdIN dOUT

Figure 12: Open and closed latch states

There are two major latch disciplines: NC normally closed and NO normally open. In this
account, we follow the NC discipline only. Furber [20, section 3, page 221 et. seq.] provides
clear descriptions of both protocols, their uses and their pitfalls.

When an NC latch is in its quiescent closed state, both rL and aL are low and bus dIN is
disconnected from the latch. We assume that the next data value to be captured, say Dk , has
been placed on the input bus dIN .

open: when rL is raised, dIN is connected to the latch. The data value on dIN , Dk , enters
the latch and is also copied onto dOUT . When these are both stable, the latch sends an
acknowledgement to the controller by raising aL.

When the latch is open, rL = aL = T and dIN = latch = dOUT . Whilst open any
variation in dIN will be passed through changing the value in the latch and on dOUT .

closed: when rL is lowered, dIN is disconnected from the latch. The data value is now said
to be captured. The latch then sends an acknowledgement signal informing the controller
that the latch is closed by lowering aL.

When the latch is closed, rL = aL = F, latch = dOUT and will not be affected by any
change on dIN .

Note that data is guaranteed stable in the latch and on dOUT only when the latch is closed.
Since we map signals to wires, the specification of NC (with trace variables) is simply:

NC = rL.open.aL.rL.closed.aL.NC

State machines are quite smart at figuring out whether a signal is to go up or down.

44

A Design Space and its Patterns Birtwistle, Stevens

3.1.2 Common 2phase Building Blocks

a T2
r b

c

T2 = a .b.a .c.T2

a

b
M2 c

M2 = a .c.M + b.c.M2

a F2

b

c

F2 = a .(b.c.F2 + c.b.F2)

a

b
C2 c

C2 = a .b.c.C2 + b.a .c.C2

Figure 13: T2/M2 and F2/C2 circuit descriptions

Toggle: T2 = a.b.a.c.T2 The Toggle inputs a signal on a and routes it out on b. On
receiving a second signal on a, it routes it out on c. Then this 4-cycle repeats. Thus odd
numbered input signals are routed out via b and even numbered input signals via c. It is
customary to mark the first output line b of Toggle with a blob • in a circuit diagram.

Merge: M2 = a.c.M2 + b.c.M2 If a Merge receives its next input on a it will acknowledge
by emitting a signal on c. If it receives its next input on b it will also acknowledge by
emitting a signal on c. The designer must see to it that the a.c and b.c transactions never
overlap.

Fork: F2 = a.(b.c.F2 + c.b.F2) The F2 has one input a and two outputs b and c. A
signal arriving on a is routed to both b and c in turn but in either order. The F2 is used
to instigate 2 components running in parallel by firing up both.

Collector: C2 = a.b.c.C2 + b.a.c.C2 The C2 , commonly referred to as a C-element, has
two inputs a and b and one output c. When signals have arrived on both its inputs, again
in either order, it forwards an acknowledgement on c. The C2 element is used as a
collector to ensure that the components in a 2-parallel system rendezvous. In general,
input signals may be retracted, but as this will not occur in the implementation described,
we use a simpler (sufficient) description of C2 .

3.1.3 FNC: Furber’s Normally Closed stage

FNC is constructed by wiring together a C2, an M2, a normally closed latch, a T2, and an F2
fork as shown in Figure 14. For space reasons, the design is presented with the Input lines at
the top and the Output lines on the bottom. The C2 ensures that the previous data value has

C2

�
� M2 Latch T2c s

ir

oa

ia

or

rL aL

dIN

dOUT

Figure 14: FNC: Furber’s normally closed latch

45

A Design Space and its Patterns Birtwistle, Stevens

been passed on dOUT and that the next data value is stable on dIN . Thereafter a linear thread
of control passes through the inner circuitry M2..Latch..T2 twice as shown below in Figure 15.

c C2

�
�

Pass 1� - Pass 2� -

M2
Latch

opens
T2 M2

Latch

closes
T2

ir

oa

ia

or

F2
c2m rL↑ aL↑ t2m rL↓ aL↓ t2f

dIN

dOUT

dIN

dOUT

Figure 15: The route through FNC

Figure 15 emphasises that C2 ensures both inputs have fired before the circuit starts to deal
with the next request and only on request completion does the F2 distribute the appropriate
output signals. The first pass opens the Latch enabling the fresh data value on dIN to be
captured. The second pass closes the latch capturing the fresh data value and holding it stable
until it has been passed to the successor stage. After the second pass the thread passes to the
fork F2 which forwards notice of fresh data to the successor stage and successful capture to the
preceding stage.

1. C2 has input signals on (i) ir and (ii) oa. While ir signals the start of transaction k+1,
oa signals the completion of transaction k, so that on first use, we need to pre-fire the oa
input. This is signified by the circle on its input port in Figures 14 and 15. Both being
accepted will guarantee that (i) fresh data is present on dIN and (ii) that the previous data
(still held in the latch and on dOUT) has been passed to and captured by the successor
stage. Once both signals have been accepted, C2 signals M2.

2. Pass 1: open the latch

(a) M2 forwards the signal from C2 to the Latch by raising rL.
(b) Latch When rL↑ arrives, the Latch opens connecting to dIN and accepts the fresh

value from dIN and copies it onto dOUT . When both are stable, the Latch forwards
an acknowledgement to T2 by raising aL.

(c) T2 routes this signal back to the M2 which sets up the second pass to close the
latch.

3. Pass 2: close the latch

(a) M2 forward the request from T2 to the Latch by lowering rL. (Note that the circuitry
guarantees that the two uses of M2 are well separated in time and so it is safe to use
a Merge here.)

(b) Latch When rL↓ arrives, the Latch closes, disconnecting dIN and capturing its fresh
data value. The preceding stage may now put a fresh value on dIN without affecting
either the local latch value or dOUT . The Latch now lowers aL in acknowledgement
of the capture.

(c) T2 routes the signal to F2 signalling that the latch is closed guaranteeing the stability
of fresh data both locally and on dOUT .

4. F2 sends signals (i) backwards to the inputting stage acknowledging capture of this data
value and permitting the next input cycle to begin and (ii) to the successor stage informing
it that its next data value is stable on its input bus.

46

A Design Space and its Patterns Birtwistle, Stevens

3.2 Specifying max 1

Figure 16 shows the two constituents of Furber’s pipeline stage: a normally closed latch and its
associated controller.

NC

I | O

dIN dOUT

6

?
rL aL

-

�

-

�
ir

ia

or

oa

Figure 16: Latch and Controller interplay

Controller Initially we ignore trace variables and any interactions with the Latch. I defines
the cyclic sequence of actions on the incoming side and O describes the cyclic sequence of
actions on the outgoing side. Their separate descriptions follow the patterns established in OI
in Section 2.3 but they cooperate ‘in reverse order’. The specification I = ir . ia . I is to be
interpreted as:

ir : when ready, the source places fresh data Dk on dIN and then signals its presence by
signalling on line ir . I is then blocked until certain that the previous datum Dk-1 has
been passed to the next stage.

ia: only when Dk has been captured may I return an acknowledgement to the source by
signalling on line ia.

I : whereupon the next input cycle begins

O , which acts as source for the next stage, gives the cycle of actions on the outgoing side: O =
or . oa . O . To be safe, we will have to guarantee that O is blocked from emitting or until a
fresh data value has been captured by I . Our initial specification of a stage (without blocking)
is just the composition of its input interface with its output interface:

I = ir . ia . I
O = or . oa . O
ST = (I | O)

Reading . as and some time later, we interpret their occurrences in ir .ia and oa.or as arbitrary
internal delays; and in ia.ir and or .oa as arbitrary external delays.

The blocking constraints between I and O are handled by two tokens which one may put
or get . We use tokens NEXT with gN /pN and PASS with gP/pP operations1. The putter is
not delayed; the getter may be. The essential safety blockings are:

NEXT = gN .pN .NEXT
PASS = pP.gP.PASS

I = ir . gP . ia . I
O = gN . or . oa . O

ST = (I | NEXT | PASS | O)

where gP will block I from capturing the next value until the current value has been passed
thus preventing premature overwriting, and gN will block O from forwarding its or until a fresh

1I and O do not handshake directly but indirectly via NEXT and PASS . It saves on clutter if we put all
the over-barred handshake signals within the two tokens.

47

A Design Space and its Patterns Birtwistle, Stevens

value has been captured. All that remains is to free I by a judiciously placed pP and to free O
by a judiciously placed pN. The key to these synchronisations is:

I = ir . gP . capt . pN . ia . ir . gP . capt . pN . ia . ir . gP I
⇓ ⇑ ⇓ ⇑

O = gN . or . oa . pass . pP . gN . or . oa . pass . pP O

in which we have temporarily included trace variables capt and pass for extra clarity. If we omit
the handshaking signals and retain only the traces and the get/put operations, we see that
these synchronisations faithfully uphold safety by maintaining the cyclic ordering:

cycle (gP ≺ capt ≺ pN ≺ gN ≺ pass ≺ pP)

(Controller | Latch interplay) Our final step is to include the interactions with the latch.
Taking a cue from the thread in Section 3.1.3, we choose to associate the latch open and close
requests with our thread I .

NC = rL . open . aL . rL . closed . aL . NC
m m m m

I = ir . gP . rL . . aL . rL . . aL . pN . ia . I

O = gN . or . oa . pP . O

FNC = (NC | I | NEXT | PASS | O) \ { rL, aL, gN, pN, gP, pP }

Table 5: First specification of FNC

This is observationally equivalent to:

I = ir . gP . open . closed . pN . ia . I

O = gN . or . oa . pP . O

FNC = (I | NEXT | PASS | O) \ { gN, pN, gP, pP }

Dropping the trace variables which have served their purpose, we arrive at our final form of the
specification of an FNC stage:

I = ir . gP . pN . ia . I

O = gN . or . oa . pP . O

FNC = (I | NEXT | PASS | O) \ { gN, pN, gP, pP }

Table 6: Final specification of FNC

We claim that this specification is the least constrained since I is freed up (by pP/gP) as soon
as O has received the acknowledgement oa confirming the current value has been successfully
passed downstream, and O is freed up (by pN/gN) as soon as I has captured the next fresh
data value. From now on, we will name it max 1.

Rider. Because open/close signals are entirely internal handshakes, the controller and the
stage are observationally equivalent. For the same reason, normally open and normally closed
variations on the same controller have the same shape. See for example the 4 variations given
by Efthymiou and Garside in [19].

48

A Design Space and its Patterns Birtwistle, Stevens

�� �� �� �� �� �� �� �� �� ��
�� �� �� �� �� ��
or or or

? ? ?

• ••

•

• •

•��

� �
?

��

� �
?

��

� �
?

oa

- - - -
ir iria ia

- -
iria

Figure 17: 8-state 2phase latch controller states

3.2.1 Minimised FSM for max 1

The CWB will minimise our formal definition of max 1 into the smallest equivalent state machine
as in Figure 17. Horizontally the labels show input signals; vertically and wrapped around, we
have the output signals. The initial state is marked . The leftmost state in row 1 shows
underrun when the output side gets ahead of the input side. The states at the right hand
ends of both rows show overrun when the input side is getting ahead of the output side. max 1

permits two extreme behaviours and any interleaving behaviour between them:

1. The south and west edges (output is the faster) has the trace: LOOP(ir .or .oa.ia) and
may cycle forever through these 4 actions starting from the initial state.

2. The north and east edges (the input side is faster) has the trace: ir .LOOP(ia.ir .or .oa)
which takes a lead move to enter the 3rd state in row 1 of max 1 from whence it may cycle
forever through the 4 loop actions.

Both loops contain 4 actions (two inputs and two outputs) and maintain the integrity of their
signal orderings.

3.2.2 Useful Liveness Properties for max 1

L1 : It is always possible to return to the initial state

L2 : In a live shape, the input and output interface cycles are always maintained.
Formally, 2cycle (ir , ia) and 2cycle (or , oa)

Liveness properties L1 and L2 are maintained by all live cutaway subdesigns.

3.3 Experiments with max 1

Experiments were carried out composing shapes max 1 to form linear pipes LPd (Figure 18)
with depths d varying from 1..12 and with parallel pipes PPw,d with widths w varying from
1..8 and depths d from 1..12. We may compare and relate all our designs since pipeline stages,
linear pipelines and parallel pipelines, all use the same input/output signal names.

- - - - - -

������
ST1 ST2 ST3 STd

ir

ia

or

oa

Figure 18: LPd : linear pipeline of depth d stages

49

A Design Space and its Patterns Birtwistle, Stevens

3.3.1 MAX d: linear pipelines composed from max 1.

2phase pipelines constructed from max 1 stages grow in regular fashion with state sizes 8, 12,
16, ... for pipes of length 1, 2, 3, ...

�
 �	 �
 �	 �
 �	 �
 �	 �
 �	 �
 �	 �
 �	�
 �	 �
 �	 �
 �	 �
 �	 �
 �	
- - - - - -

- - - -
? ? ? ? ?

ir ia ir ia ir ia

ir ia ir ia

or or or or oroa

� �� �
 	� � �

� �� �� �� �� �

Figure 19: MAX 2: Linear pipeline built from two max 1 stages

Figure 19 shows the minimised state machine for depth 2 with the 4 extra states over max 1

inside a dashed box. As d increases, the shape (profile) of LPd remains the same: it increases
each time by 2×2 states. This indicates full capacity: each stage added permits an extra data
value to be stored.

Once the pattern of arrows in Figure 19 has been absorbed, a less cluttered picture of max 1

suffices which represents the initial state by and the other live states by •. This clutter free
notation is easy to extend to arbitrary pipelines:

MAX 1 MAX 2 MAX 3

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

Table 7: Clutter free depiction of MAX pipelines

With a little artistic license, we may indicate the shape of the pipeline MAX d built from d
copies of shape max 1 by

MAX 1 = max 1

MAX d+1 = MAX d ++
••
••

Table 8: Pipelines composed with max 1

3.3.2 PPw,d: parallel pipelines composed from MAX d

S
P
L
I
T
2

LPd

LPd

J
O
I
N
2

- - - -

� �

- -

� � � �

ir

ia

or

oa

Figure 20: PP2,d: parallel pipeline of width 2 and depth d

The parallel pipeline shown in Figure 20 is composed from two inner linear pipes of the
same depth d . Entry and exit from the linear pipes is controlled by a SPLIT2 and a JOIN2

50

A Design Space and its Patterns Birtwistle, Stevens

respectively. The SPLIT2 ensures that on receiving a request on ir , appropriate data is fed
to both inner pipes each of which will acknowledge when their own individual datum has
been captured. When both inner acknowledgements have been received, the SPLIT2 will
acknowledge on ia. The JOIN2 works in analogous fashion. Thus each inner pipe will hold
the same number of data values but they progress independently. SPLIT2 and JOIN2 are
implemented as combinations of the F2 and C2 circuits defined in Section 3.1.2. Note that if
we run parallel pipeline experiments with inner linear pipelines of different depths, then the
shortest depth dominates.

We ran our experiments using inner linear pipelines composed from max 1, that is when LPd

= MAX d. For w = 1..8 and d = 1..12, PPw,d is observationally equivalent to PP1,d which again
is observationally equivalent to MAX d itself. This result has immediate practical application
in designing microprocessors where we may replace a complicated data path composed from
max 1 stages by a much simpler equivalent model when reasoning about and verifying the rest
of the design.

4 Cuts and the Design Space

Taking our cue from the first liveness property L1 (the initial state must be retained), cutaways
can be partitioned into two sets: R for the input cuts and L for the output cuts. In this section
we show how a complete family of sub-shapes can be generated from max 1 by systematically
cutting away input and output states and display both cut lattices. Shapes may be characterised
by their cuts from MAX 1 and homogeneous pipelines by their cuts from MAX d. Experiments
show that pipeline patterns are regular and predictable.

4.1 L: Output cuts

In Figure 21 we have replicated the top row of 5 states at the bottom as an extra third row
aligned two states to the right. The potential candidates for a left cut now lie in the two states
marked •. If we try to take away more states on the left, then we lose the ability to return to
the initial state.

• • • •
• • •
• • • •
La

x • • •
• • •
x • • •
L1

Figure 21: Region of L cuts from max 1 together with specific cut L1

Cut La denotes the removal from max 1 of a states from column a working vertically from the
bottom (as shown). The specific cut L1 is depicted on the right.

La constraints: a ∈ {0..2}; L0..L2

The three L.cuts are displayed below shape by shape. In this figure, represents the initial
state, cut states by x and uncut states in the L.cut region by •.

L0 L1 L2

• ••••••
x ••••••

x •••
x ••

Figure 22: Set of L.cuts

51

A Design Space and its Patterns Birtwistle, Stevens

Each L.cut has an distinct identifying signature whose flavour is indicated below. It is straight-
forward to map our informal signatures into formal modal-µ, the property checking language
supported on the CWB.

L0 = LOOP (ir . or . oa . ia)
L1 = LOOP (ir . or . ONLY ia . oa)
L2 = LOOP (ir . ONLY ia . or . oa)

Table 9: Characteristic L.cut patterns

Starting from the initial state, we track the 4 actions which enable us to loop back (and repeat
forever). ONLY is used when we deviate from the pattern for L0. An output move has been
cutaway and our only move is sideways along an input arc. Notice that each loop body contains
2 input actions and 2 output actions and they preserve the mandatory liveness ordering.

4.2 R: Input cuts

Cut Ryz denotes the removal from max 1 of y states from row 1 and z states from row 2 working
horizontally from right to left. The maximal right cutaway per row is 2: if we cutaway more
we will generate a deadlocked shape. Cut R21 is depicted in Figure 23.

• • • •
• • •
• • • •

y

z
Ryz

• • x x

• • x

• • x x

2

1
R21

Figure 23: Region of R cuts from max 1 together with specific cut R21

Ryz cannot choose y and z independently. For example, R01 would render the rightmost state
in row y unreachable. The family of all valid R cuts from max 1 is generated by:

Ryz constraints: y ,z ∈ {0..2}; y ≥ z R00..R22

The six R.cuts are displayed below shape by shape. In this figure, represents the initial state,
cut states by x and uncut states in the L.cut region by •.

R00 R10 R20

R11 R21 R22

• • • •
• • •

• • • x
• • •

• • x x
• • •

• • • x
• • x

• • x x
• • x

• • x x
• x x

Figure 24: Set of R.cuts

52

A Design Space and its Patterns Birtwistle, Stevens

Each R.cut has a distinct signature:

R00 = ir . LOOP (ia . ir . ONLY or . ONLY oa)
R10 = ir . LOOP (ia . ONLY or . ir . ONLY oa)
R20 = ir . LOOP (ONLY or . ia . ir . ONLY oa)
R11 = LOOP (ir . ia . ONLY rr . ONLY oa)
R21 = LOOP (ir . ONLY or . ia . ONLY oa)
R22 = LOOP (ir . ONLY or . ONLY oa . ia)

Table 10: Characteristic R.cut patterns

Starting from the initial state, we track the actions which enable us to loop forever. This time
ONLY is used when an input move has been cutaway and our only move is along an output
arc. Notice that R.cuts Ry0 do not loop around the initial state but, after a lead-in ir move,
from its right neighbour. Again each loop body contains 2 input actions and 2 output actions.
Together with the lead in move, if any, they preserve the mandatory liveness ordering.

4.3 Cut lattices

The cuts can be arranged as regular lattices as shown below.

L : chain R : lattice

L0 L1 L2

R00

R10

R20

R11

R21

R22

Figure 25: Lattice structures

4.4 Representing a shape

We denote the shape arising from the combination of cuts La and Ryz over max 1 by La[1]Ryz.
Clearly max 1 = L0[1]R00. The core shapes in this design space are shown in Table 11, of which
14 are live and 4 are dead.

Table 11: Complete L×R Cut Table

Full Half Const

La[1]Ryz R00 R10 R11 R20 R21 R22

L0 live live live live live live
L1 live live live live live dead
L2 live live live dead dead dead

53

A Design Space and its Patterns Birtwistle, Stevens

4.5 Homogeneous Pipeline Experiments

In this subsection we show how homogeneous pipelines grow across the whole L×R (3×6) design
space. We carried out the same linear and parallel homogeneous pipeline experiments for all
18 core shapes as we did for max 1 in Section 3.3. The experimental results over this range are
summarised below:

1. Live shapes compose into live pipelines; dead shapes always compose to dead pipelines.

2. The design space is well behaved. Its 14 live shapes have occupancy full, half, or constant
only. Full occupancy means that the pipeline can hold an extra data item for each stage
added; half occupancy per 2 stages added; and constant that however long the pipeline,
it will only hold one data item. Occupancy is determined solely by the right cut: R00,
R10, R11, R20 always give full occupancy; R21 half; and R22 constant.

3. The homogeneous cut set is closed. If we generate pipes from core shapes then the resulting
pipeline is cut from MAX d. We may thus extend our shape notation to pipelines of any
depth such that

SHAPE uniquely as La[1]Ryz PIPE as La[d]Ryz

where La ∈ L and Ryz ∈ R and d = 1,2,3,. . . . The uniqueness snag for pipes lies with
cuts R00 and R22 since La[d+1]R22 is observationally equivalent to La[d]R00. Here we
content ourselves just with the observation. The cure is found in the next section when
we generalise to mixed pipelines.

4. Both L.cuts and R.cuts show persistent behaviours (informally retain shape) as pipeline
depths increase. This is exemplified by pipelines composed from full, half and constant
capacity shapes in Figure 26.

Pipeline pattern d = 1 d = 2 d = 3

L2[d]R10

L1[d]R21

L0[d]R22

Full:
••
••

Half:
•
•

Const:

x • • x
x • •

x • • • • x
x • • • •

x • • • • • • x
x • • • • • •

x • x x
• • x

x • • x
• • •

x • • • x x
• • • • x

• • x x
• x x

• • x x
• x x

• • x x
• x x

Figure 26: Persistent behaviour of cuts

5. As with max 1, for any live shape a parallel pipeline PPw,d always behaves as its PP1,d.
But all full capacity homogeneous parallel pipelines of depth d behave as L0[d]R00; all
half capacity homogeneous pipelines stutter: those of depth 2d-1 and 2d both behave
as L0[d]R00; and all constant homogeneous pipelines of depth d parallel behave as the
shape L0[1]R22. In other words, there are only three possible parallel behaviours for
homogeneous parallel pipelines composed from the 14 live basic shapes and each of them
has a left cut of L0.

4.5.1 Characterising homogeneous pipelines

It is easy to extend the notation for shape signatures to pipes. The left signature L remains as
it was. The right signature R has to account for 4 extra states for a full occupancy cut, 2 for a
half cut; and remain as is for constant capacity. We follow the style for R.cuts R00, R10, R20 in
Table 10, and we prefix the definition at the previous depth by ir .ia for full capacity; alternate
R21 and R01 cuts at the same depth for half cuts; and use the same check when constant.

54

A Design Space and its Patterns Birtwistle, Stevens

LPkLa = La

LP1R10 = R10 LP1R21 = R21 LP1R22 = R22
LP2R10 = ir .ia.LP1R10 LP2R21 = R10 LP2R22 = R22
LP3R10 = ir .ia.LP2R10 LP3R21 = ir .ia.LP1R21 LP3R22 = R22
LP4R10 = ir .ia.LP3R10 LP4R21 = ir .ia.LP2R10 LP4R22 = R22

...............

Table 12: Sample linear pipeline characterisations

5 Mixed Pipeline Structures and Patterns

In this section we relate experiments carried out with linear mixed pipelines. The increase in
generality yielded one surprise: some R.cut combinations, for example R11.R20, gave rise to a
right cut of R31 (valid from depth 2). With R31 included however, the R.cuts become closed.
This slight addition has important ramifications. By dispensing with cut R22, the uniqueness
of pipeline representation snag noted in the previous section disappears. Further the lattice of
R.cuts may be cast as two related chains each of which has a simple mapping from the chain
of L.cuts; a structure that we exploit in this section.

Notation. In this section, we use Sa.Sb as a compact notation for the linear pipeline formed
by Sa and Sb. In the same way, if Sa has cuts La and Ra and Sb has cuts Lb and Rb, then we
denote the cuts of Sa.Sb by La.Lb and Ra.Rb.

5.1 Initial mixed experiments
For linear pipeline S2 constructed from shapes Sa and Sb (Figure 27), signal or from Sa
handshakes with ir of Sb and signal ia from Sb handshakes with oa of Sa. The liveness
conditions thus assure the liveness of the pipeline provided that Sa and Sb are both live, be
they of full, half or constant capacity.

Sa Sb

ir

ia

or

oa

or

oa

ir

ia

Figure 27: Mixed pipeline S2 = Sa.Sb

Revised R.cuts. Initially we experimented with all 18 combinational possibilities for L.cuts
and R.cuts in pipelines of depth 2. They confirmed the liveness proposition and the indepen-
dence of L.cuts and R.cuts, but yielded one unexpected result: that the R.cuts were not closed.
The R.cut combinations R11.R20, R21.R20, R11.R21 all combine to form a depth 2 R.cut of
R31. If we augment the set of right cuts by R31, then R.cuts becomes closed. We have already
noted that R22 is redundant. If we omit it, we have an R.cut set that is closed.

L : chain R : 2 chains

L0 L1 L2

R00

R11

R10

R21

R20

R31

Figure 28: Lattice structures revised

55

A Design Space and its Patterns Birtwistle, Stevens

Since the L.cuts form a chain, it is fruitful to think of the R.cuts as a lattice structure formed
by two related chains R0 and R1 shown horizontally on the right of Figure 28. It is then easy
to map amongst them and take advantage of the structural relationships between the output
and input cuts.

Revised pipeline notation. If we extend our definition of maximal pipelines to include the
the 4 state max 0 (= L0[1]R22)

max 0 = ir .or .oa.ia.max 0

MAX 0 = max 0

MAX d+1 = MAX d ++
••
••

Table 13: MAX pipelines revised

then we can express any live pipeline constructed from core shapes uniquely by cutaways from
some MAX d. Clearly, there is just one live pipeline at depth 0, max 0 itself, which cannot
tolerate any cuts. There are 13 live pipelines at depth 1 (where no R31 cut will be live).
Pipelines at depths 2 or more accept all 18 cut possibilities.

5.2 Experimental Results for Mixed Linear Pipelines

Our experiments paired up all shape possibilities L×R, including the non-live which served to
confirm our liveness properties. By enumeration over all cases S2 = Sa.Sb:

1. Liveness: S2 is live if and only if Sa and Sb are live.

2. Independence: L.cuts and R.cuts are independent.
L2, the L.cut of S2 , depends solely upon La and Lb.
R2, the R.cut of S2 , depends solely upon Ra and Rb

3. Closure: L2 ∈ L and R2 ∈ R. This implies that any pipeline constructed from our basic
shapes can be expressed in terms of cuts from some MAX d for some d .

4. Unit: there are unit (identity) L and R cuts.

L1 . La = La La . L1 = La

R10 . Ryz = Ryz Ryz . R10 = Ryz

5. Association: given the composition of three shapes Sa.Sb.Sc

(La . Lb) . Lc = La . (Lb . Lc)
(Ra . Rb) . Rc = Ra . (Rb . Rc)

Thus the behaviours of L.cuts and R.cuts are independent, consistent and predictable. That
L.cuts and R.cuts have a well defined algebraic structure hints at the prospect of further rela-
tionships and insights.

L3 R3 d3
-

?

L1

L2

LTAB

-

?

R1

R2

RTAB

-

?

d1

d2

DTAB

56

A Design Space and its Patterns Birtwistle, Stevens

5.2.1 Tabulation of LTAB, RTAB and DTAB

Because L.cuts and R.cuts work independently, we can condense their experimental properties
in simple lookup tables. The pipeline depth of the resulting shape depends upon the constituent
depths and also upon its two R.cuts.

LTAB. Cut L1 is the unit (or identity) cut.

Table 14: LTAB

La.Lb L0 L1 L2

L0 L0 L0 L0
L1 L0 L1 L2
L2 L2 L2 L2

RTAB. Cut R10 is the unit cut. Notice that the row entries for R21 are related to those of
R10 and span the spectrum of R.cuts but shifted by 3.

Table 15: RTAB

Ra.Rb R00 R10 R20 R11 R21 R31

R00 R00 R00 R20 R00 R20 R20
R10 R00 R10 R20 R11 R21 R31
R20 R00 R20 R20 R00 R00 R20

R11 R11 R11 R31 R11 R31 R31
R21 R11 R21 R31 R00 R10 R20
R31 R11 R31 R31 R11 R11 R31

DTAB. The data for DTAB is presented graphically. Since it partly depends upon the
constituent R.cuts, R1.R2, the results are entered in patterns of the form R1.R2 → R3.

Table 16: DTAB

Ra.Rb R00 R10 R20 R11 R21 R31

R00
••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••••
••••→

••
••
••
••
••
••

R10
••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••••
••••→

••
••
••••
••••

R11
••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••••
••••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••••
••••

••
•• .
••••
••••→

••
••
••••
••••

R20
••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••

••
•• .
••
••→

••
••

••
•• .
••••
••••→

••
••

R21
••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••
••
••
••

••
•• .
••
••→

••••
••••

••
•• .
••
••→

••
••

••
•• .
••
••→

••
••

••
•• .
••••
••••→

••
••

R31
••••
•••• .

••
••→

••
••
••
••
••
••
••••
•••• .

••
••→

••
••
••••
••••

••••
•••• .

••
••→

••
••
••••
••••

••••
•••• .

••
••→

••
••
••
••
••••
•••• .

••
••→

••
••
••
••
••••
•••• .

••••
••••→

••
••
••••
••••

57

A Design Space and its Patterns Birtwistle, Stevens

The NW, NE, SW quadrants contain those combinations that give rise to full occupancy. In
these quadrants, if R1 is of depth d1 and R2 is of depth d2 then R1.R2 gives rise to a pipe of
length d1+d2. The SE quadrant contains those combinations that give rise to pipes of length
d1+d2-1. So DTAB reveals that the calculation of pipeline depth is simple.

5.3 Calculation of Pipeline Behaviours

Space precludes any account of mixed parallel pipeline behaviours, but they too are calculable.

5.3.1 Application I: mixed linear pipe of depth 4

Once we have these tables it is straightforward to calculate the shape of any 2 stage pipeline.
Because the cuts are closed, we can calculate the behaviours and properties of pipelines of any
depth. Longer pipelines may be calculated by iteration as in the following application:

let PIPE4 = (S1 | S2 | S3 | S4) \ HIDE
where S1 = L1[1]R20

S2 = L0[0]R00

S3 = L2[2]R31

S4 = L1[1]R11

then L4 = (L1.L0).L2.L1 → (L0.L2).L1 → L0.L1 → L0

and R4 = (R20.R00).R31.R11 → (R00.R31).R11 → R20.R11 → R00

and d4 = (1.0).2.1 → (1.2).1 → 3.1 → 3
Thus PIPE2 = L0[1]R00 since R20.R00 lies in the SW quadrant

PIPE3 = L0[3]R20 since R00.R31 lies in the NE quadrant
PIPE4 = L0[3]R00 since R20.R11 lies in the SE quadrant

Note that associativity allows us to compose these 4 shapes any way we choose as long as their
ordering is respected. These predictions have all been confirmed by experiment.

5.3.2 Application II: mixed rings

We can model rings by connecting the outgoing pipe line or to ir and the outgoing line ia to oa
modulo initialising the first ring stage so that it has captured a data value. In our experiments
all other pipeline stages are empty.

L[d]R

d
d iria

or

oa

Figure 29: Mixed rings

Experiments show that ring stages may be mixed freely and that the ring will be live provided
that the pipeline is live and has depth at least 2.

5.3.3 Application III: relating LTAB and RTAB

In this application we show the relationships between LTAB and each of the 4 quadrants of
RTAB. This means we can calculate both L.cut and R.cut pipeline behaviours from LTAB.

58

A Design Space and its Patterns Birtwistle, Stevens

The two cut families are related by a number of maps. As we will be operating on cuts, rows
of cuts, and (sub-)tables of cuts, we introduce two extra operators. If f is a function operating
on a cut, then ROW.f applies f to each cut in a row of cuts and TAB.f applies f each cut
element in a table of cuts. The design space is so small that we define the basic cut functions
by enumeration of cases.

L0 L1 L2

R00 R10 R20 R11 R21 R31

?

6
LtoR0 R0toL

?

6
LtoR1 R1toL

-

�

II

II

Figure 30: Maps between L.cut and R.cut chains

Maps between R.chain0 and R.chain1: II Rxy = R(x+1)(y+1) mod 22

ROW.II { R00, R10, R20 } = { R11, R21, R31 }
ROW.II { R11, R21, R31 } = { R00, R10, R20 }

Maps between L and R:

ROW.LtoR0 { L0, L1, L2 } = { R00, R10, R20 }
ROW.LtoR1 { L0, L1, L2 } = { R11, R21, R31 }

ROW.R0toL { R00, R10, R20 } = { L0, L1, L2 }
ROW.R1toL { R11, R21, R31 } = { L0, L1, L2 }

Complements are symmetry relations between cuts in a family. Notice that there is also
symmetry within R.cuts as a whole.

L.COMP = { (L0, L2) , (L1, L1) , (L2, L0) }
R0.COMP = { (R00, R20) , (R10, R10) , (R20, R00) }
R1.COMP = { (R11, R31) , (R21, R21) , (R31, R11) }

Transpose LTABT is required in generating RTAB00, the Ro×Ro quadrant of RTAB. It arises
because we take L.cuts vertically and R.cuts horizontally.

FLIP is a subtable operation that takes a 3×3 quadrant, swaps rows 1 and 3 and applies
ROW.II to row 2. Notice that II ◦ FLIP = FLIP ◦ II.

FLIP [r1, r2, r3] = [r3, ROW.II r2, r1]

5.3.4 Generation of RTAB from LTAB

We generate RTAB quadrant by quadrant in the chain×chain order: R0×R0, R0×R1, R1×R0,
R1×R1.

59

A Design Space and its Patterns Birtwistle, Stevens

In tabular form

RTAB00 = TAB.LtoR0 LTABT

RTAB01 = FLIP RTAB00
RTAB10 = TAB.II RTAB00
RTAB11 = TAB.II RTAB01

Table 17: Table of LTAB → RTAB transformations

and by diagram:

LTABT -
LtoR0

RTAB00 RTAB01

RTAB10 RTAB11

-

-
? ?

FLIP

FLIP

TAB.II TAB.II

@
@
@

@
@
@R�

�
�

�
�
��

FLIP◦TAB.II

Figure 31: LTAB → RTAB transformation

Notice that the bottom half of RTAB may be obtained from the top half by applying TAB.II
and vice versa. Going laterally is more interesting.

5.4 Extension to 4phase untimed

The approach to mixed pipelines outlined in this section has been applied equally successfully
to the 10×20 untimed subset of 4phase designs; the 19×38 untimed ++ locally timed subset;
and to the complete 35×140 4phase design space.

L000

L200

L400

L220

L420

L440

L222

L422

L442 L444

R0000

R0020

R0400

R0022

R0042

R0044

R2022

R2042

R2044 R4044

R2222

R2242

R2262

R2244

R2264

R2266

R4244

R4264

R4266 R6266

Figure 32: L.wedge R0.wedge and R2.wedge

Just as with 2phase, the R.cuts previously published [8, 34] were closed for homogeneous
pipelines but not for mixed. Following through the techniques presented here resulted in a

60

A Design Space and its Patterns Birtwistle, Stevens

reduction of in the size of R.cuts from 25 to 20 which revealed for the first time a splitting
of R.cuts into two subsets each of which is isomorphic to L.cuts as shown in Figure 32. It is
doubtful we would have made these connections without venturing into mixed pipelines and
insights gleaned from this work in the 2phase domain.

In 4phase, the L.cuts have 3 indices, Labc and R.cuts 4, Rwxyz. Each R.cut in wedge R0 has
x=0, and each R.cut in wedge R2 has x=2. Similar to the II operation for 2phase, cut Rw0yz

in wedge R0 is vertically aligned with cut R(w+2)2(y+2)(z+2) in wedge R2.
It is simple to draw up the 4phase equivalents of the 2phase mapping functions of Sec-

tion 5.3.3. The structure of the 2phase transformations given in Figure 31 still holds subject
to a (simply) modified versions of the FLIP operation and II operations.

6 From Shape to Silicon

An implementation study was performed similar to that in [34]. Systematic concurrency re-
duction produced by applying cuts to the most concurrent shape results in the complete design
space. This allows all possible specifications to be investigated in order to obtain the best
circuit for any specific design goal, be it high performance, low power, small area, latency, etc.

When realizing designs, shapes are partitioned into design styles. Shapes can be catego-
rized into two protocol classes, untimed and timed. Untimed shapes come in two classes: delay
insensitive (DI) and speed independent (SI). Likewise timed shapes have two classes: locally
timed (LT) and externally timed (ET). Locally timed shapes can be designed to work in nearly
all homogeneous or mixed pipelines based on the local delays present inside the circuit imple-
mentation of any given shape. However, externally timed shapes are only correct when specific
relative delay requirements are enforced on the response time of other controllers. For example,
the consumer (downstream controller) connected to an ET shape may be required to respond
much faster than the producer (the upstream controller).

This paper extends previous work to include all locally timed shapes. LT shapes for the
2phase family are formed by the L1 and R10 cuts. Externally timed cuts include all Ry1 cuts.
Thus to investigate all DI, SI, and LT shapes, the L and top R chains from Figure 28 are
employed; the lower R chain is discarded. The 3×3 cuts result in 9 shapes categorized as one
DI, two SI, five LT and one deadlocked shape.

An automated flow was developed to generate and optimize asynchronous pipeline con-
trollers from the shape state machines. The designs were synthesized and technology mapped
to Artisan’s static library for IBM’s 65nm 10sf process node using Petrify [15]. The circuits

Frequency in GHz

L0 L1 L2 La[1]Ryz

4.22 4.40 4.00 R00

4.50 5.05 4.27 R10

4.20 3.78 – R20

Energy per Token in pJ

L0 L1 L2 La[1]Ryz

8.73 11.20 7.15 R00

8.90 7.95 7.75 R10

7.48 5.18 – R20

Area in µm2

L0 L1 L2 La[1]Ryz

217 243 204 R00

221 220 206 R10

207 211 – R20

Figure 33: Performance, power, and area of the circuits

61

A Design Space and its Patterns Birtwistle, Stevens

are verified for conformance to the shape, and automatic relative timing (RT) constraints are
created [43]. The RT constraints are applied using a custom flow to synthesize and optimize the
circuits for power and performance using commercial clocked CAD tools such as Design Com-
piler and SOC Encounter [40]. The results report parasitic extracted values for the physically
placed and routed designs.

The results for performance, power and area are shown in Figure 33. The better designs
are highlighted in green, the worse designs in red. The timed L.cut and R.cut are highlighted
in yellow. All rows and columns employing timed cuts result in timed shapes (5 of the 8).

The NW corner of the tables contains shapes with the most concurrency and the SE corner
the most sequential. In general, the more concurrent shapes should admit a higher perfor-
mance; the most sequential lower power and smaller area. This general trend applies with some
notable exceptions. For example, the larger and more complicated circuits required for higher
concurrency may hamper performance. But most significantly, the locally timed cuts produce
the fastest circuits. The four highest frequency designs all employ timed cuts. The best timed
shape produces a circuit that is 20% faster than the circuit from the best untimed shape. Only
a handful of timed circuits have been investigated and published in the literature. This study
thereby opens up the possibility of uncovering new design sets with substantial performance
improvements over current state of the art.

7 Overview and summary

We have investigated an abstract model of latch controllers and presented new experimental
results on its outer and inner structure in terms of L and R lattices of cuts from the maximal
shape. L×R reveals the whole design space and has been used to guide experiments ranging
from investigating linear and parallel pipeline patterns through to investigating the behaviour of
families of circuits. The patterns have suggested algorithmic rules for predicting the behaviours
of homogeneous and mixed pipelines. Such predictions make it possible to replace complicated
irregular parallel datapaths by smooth linear pipeline behaviours—a very useful mental model
when designing systems.

Novel design space patterns herein described include: complete lattices for L and R cuts;
complete design space as L×R; notation for each shape and each pipeline as La[k]Ryz; the
consistent and independent growth patterns L and R cuts; and not least in the treatment
of mixed pipelines. Demonstrations of their practical use were given for predicting pipeline
behaviours and generating novel circuits.

1. Survey of published designs (4phase). This kept our work grounded. Our common alge-
braic (FSM) notation for their shapes (design abstractions) enables them to be ordered
and compared. In shape format, all published designs had at least input signal ordering
constraints or output signal ordering constraints; and usually both. Taking the intersec-
tion of constraints over all surveyed shapes revealed max 1, a maximal shape (most con-
current possible signal orderings), from which all published shapes could be constructed
by cutting away states on the Left or on the Right.

2. Taking our cue from the way input and output cuts characterised published designs, we
fully generalised the cut possibilities from max 1. The product L×R reveals the complete
design space for max 1 and its sub-designs. The cut classes form elegant lattices and enable
tight mathematical definitions of design style domains over max 1: e.g. delay insensitive,
speed independent, burst mode, relative timing. The definitions are defined simply in
terms of sublattices of L and R. A software suite has been developed which will take
shape specifications and generate characterized circuits. Since we have the design space,
and know how to categorize design styles, we can (and have) examined the 3×6 2phase
design space and the 10×25 DI subset of 4phase. Work is in progress studying such
characteristics as: area, power consumption, speed, ...

62

A Design Space and its Patterns Birtwistle, Stevens

3. We have conducted experiments on the behaviours of homogeneous linear pipelines of
depths 1..12 and over homogeneous parallel pipelines of depths 1..12 and widths 1..8 over
the Untimed sub-design space. These experiments revealed much persistent structured
behaviour: examples (i) if a shape is live, then so will be its pipelines; (ii) L.cuts and
R.cuts work independently of each other; (iii) all parallel compositions are observationally
equivalent to some DI single pipeline; (iv) shapes exhibit full, half, or unit occupancy;
(v) occupancy is determined solely by a shape’s R.cut. For homogeneous pipelines, the
L and R sets are closed, so that we can adapt the specification of a shape to define a
homogeneous pipeline of any depth

4. We have also experimented with mixed pipelines: by which we permit a linear pipeline to
have different shapes throughout its length; and with mixed parallel pipelines where we
may run distinct homogeneous (or mixed) linear pipelines in parallel. For tractable design
subsets, the results are again structured. In particular liveness, cut independence, the DI
behaviour of parallel pipes still hold. But for mixed pipelines, the R sets are not closed.
However it is a simple matter to include extra R.cuts (valid only from pipeline depth 2) to
ensure closure. Experiments have been completed over 2phase and 4phase shapes. These
show that shapes associate under pipelining and that the behaviour of linear pipelines of
any depth can not only be specified in terms of the L and extended R.cuts but can also
be calculated from their constituents. By extension, we can also calculate the behaviour
of mixed parallel pipelines from their constituents.

5. The understanding and formalisation of this increase generality resulted in some dramatic
(and practical) simplifications. We can now relate the L and R cut lattices and once we
have calculated the LTAB, the mixed L.cut behaviour table, we can construct RTAB the
mixed R.cut table by simple and standard transformations.

Acknowledgements

This work has been supported in part by a grant from Sun Microsystems.
Thanks are due to the asynchronous community who have made great efforts to document

and explain their circuits so they are clear to the community at large. This body of work
enabled us to model real practical designs rather than experiment with a few idealised ones
and kept us grounded. Importantly, the corpus was sufficiently large to guide our research
directions.

For their individual help and guidance over the years, we thank Erik Brunvand, Bill Coates,
Jordi Cortadella, Al Davis, Jo Ebergen, Steve Furber, Jim Garside, Luciano Lavagno, Andrew
Lines, Ying Liu, Faron Moller, Mike Stannett, Georg Struth, Chris Tofts, and Alexander
Yakovlev. They are of course in no way to blame for any lack of clarity or errors we may
have made.

References

[1] L. Aceto, K.G. Larsen, and A. Ingolfsdottir. An Introduction to Milner’s CCS. Course Notes for
Semantics and Verification. Constantly under revision. The most recent version is available at the
URL http://www.cs.auc.dk/∼luca/SV/Intro21ccs.pdf, BRICS, Department of Computer Science,
Aalborg, Denmark, 2005.

[2] J. M. Anderson, W. S. Coates, A. L. Davis, R. W. Hon, I. N. Robinson, S. V Robison, and K. S.
Stevens. The Architecture of FAIM-1. Computer, 20(1):55–65, January 1987.

[3] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathematical Plays.
pages 598–601, London, 1982. Academic Press.

[4] G. Birtwistle and Y. Liu. Modelling AMULET1 in CCS. IEE Colloquium on Design and Test of
Asynchronous Systems, pages 9/1–9/6, 1996.

[5] G. Birtwistle and Y. Liu. Specification and Property Checking of the AMULET1 Address Interface.
Designing Correct Circuits 96, 1996.

63

A Design Space and its Patterns Birtwistle, Stevens

[6] Graham Birtwistle. Control states in asynchronous pipelines. In Alex Yakovlev and Reinder
Nouta, editors, Asynchronous Interfaces: Tools, Techniques, and Implementations, pages 45–55,
July 2000.

[7] Graham Birtwistle and Matthew Morley. Case study: specifying and property checking TK, an
asynchronous AMULET-like microprocessor. In A. Yakovlev and R. Nouta, editors, Asynchronous
Interfaces: Tools, Techniques, and Implementations (AINT’2000), pages 13–22, TU Delft, July,
2000.

[8] Graham Birtwistle and Kenneth Stevens. The Family of 4-phase Latch Controllers. In ASYNC
2008, 14th International Symposium on Asynchronous Circuits and Systems, pages 71–82, New-
castle upon Tyne, UK, 7-11 April, 2008.

[9] I. Blunno, J. Cortadella, A. Kondratyev, L.Lavagno, K. Lwin, and C. Sotiriou. Handshake proto-
cols for de-synchronisation. In Proceedings of the International Symposium on Advanced Research
in Asynchronous Circuits, pages 149–158. IEEE/ACM, April 2004.

[10] A. E. Brouwer, G. Horvath, I. Molnar-Saska, and C. Czabo. On three-rowed Chomp. In INTEGER:
Electronic Journal of Combinatorial Number Theory, volume 5, pages 1–11, 2005.

[11] E. Brunvand. Translating Concurrent Communicating Programs into Asynchronous Circuits. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

[12] E. L. Brunvand and R. F. Sproull. Translating Concurrent Programs into Delay-insensitive Cir-
cuits. In IEEE International Conference on Computer-Aided Design, pages 262–265, Los Alamitos,
CA, 1989. IEEE Comput. Soc. Press.

[13] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits From Graph-Theoretic Specifications. PhD
thesis, Massachusetts Institute of Technology, September 1987.

[14] J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kondratyev, L. Lavagno, K. S. Stevens, A. Taubin,
and A. Yakovlev. Lazy transition systems and asynchronous circuit synthesis with relative timing
assumptions. IEEE Transactions on Computer-Aided Design, 21(2):109–130, Feb 2002.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a tool for
manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Trans-
actions on Information and Systems, E80-D(3):315–325, March 1997.

[16] Paul Day and J. Viv Woods. Investigation into micropipeline latch design styles. IEEE Transac-
tions on VLSI Systems, 3(2):264–272, June 1995.

[17] J. Ebergen. Parallel Computations and Delay-Insensitive Circuits. In G. Birtwistle, editor, IV
Higher Order Workshop, Banff 1990, pages 85–104, Berlin, 1991. Workshops in Computing Series,
Springer Verlag.

[18] J. C. Ebergen, J. Segers, and I. Benko. Parallel Program and Asynchronous Circuit Design. In A.
Davis and G. Birtwistle, editor, Proceedings VII Banff Workshop: Asynchronous Digital Circuit
Design, pages 50–103. Springer Verlag, Workshops in Computing Series, 1995.

[19] Aristides Efthymiou and Jim D. Garside. Adaptive pipeline structures for speculation control. In
Ninth International Symposium on Asynchronous Circuits and Systems, pages 46–55. IEEE, May
2003.

[20] S. Furber. Computing without Clocks: Micropipelining the ARM Processor. In A. Davis and G.
Birtwistle, editor, Proceedings VII Banff Workshop: Asynchronous Digital Circuit Design, pages
211–262. Springer Verlag, Workshops in Computing Series, 1995.

[21] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. C. Paver. AMULET2e:
An Asynchronous Embeded Controller. Proceedings of IEEE, 87(2):243–256, February 1999.

[22] S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines. In Second International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 11–16. IEEE
Computer Society Press, March 1996.

[23] Stephen B. Furber. A small compendium of 4-phase macropipeline latch control circuits. Technical
Report v0.3, 17/01/99, University of Manchester, Dept. of Computer Science, 1999.

[24] Stephen B. Furber and Paul Day. Four-phase micropipeline latch control circuits. IEEE Transac-
tions on VLSI Systems, 4(2):247–253, June 1996.

[25] Rakefet Kol and Ran Ginosar. A doubly-latched asynchronous pipeline. In Proceedings of the
International Conference on Computer Design (ICCD), pages 706–711, Oct 1996.

[26] Andrew M. Lines. Pipelined asynchronous circuits. Master’s thesis, California Institute of Tech-
nology, Pasadena, CA, 1998.

[27] JianWei Liu. Arithmetic and Control Componenets for an Asynchronous System. PhD Thesis,
Department of Computer Science, University of Manchester, 1997.

64

A Design Space and its Patterns Birtwistle, Stevens

[28] A. J. Martin. Compiling Communicating Processes into Delay-Insensitive VLSI Circuits. Dis-
tributed Computing, 1:226–234, 1986.

[29] A. J. Martin. Programming in VLSI: From Communicating Processes to Delay-Insensitive Circuits.
In C. A. R. Hoare, editor, Developments in Concurrency and Communication, New York, 1990.
Addison-Wesley.

[30] A. J. Martin. Synthesis of Asynchronous VLSI Circuits. In J. Staunstrup, editor, Formal Methods
for VLSI Design, North Holland, 1990.

[31] Alain J. Martin. The Design of a Delay-Insensitive Microprocessor: An Example of Circuit Syn-
thesis by Program Transformation. In M. Leeser and G. Brown, editors, Hardware Specification,
Verification, and Synthesis: Mathematical Aspects, Proceedings of the Mathematical Sciences In-
stitute Workshop, Cornell University, Ithaca, N.Y., July, 1989, pages 244–259, New York, 1989.
Springer-Verlag.

[32] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.
[33] Faron G. Moller and Perdita Stevens. The Edinburgh Concurrency Workbench (Version 7). Uni-

versity of Edinburgh, October 1992.
[34] Santosh Nagasai, Kenneth Stevens, and Graham Birtwistle. Concurrency Reduction of Untimed

Latch Protocols – Theory and Practice. In International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 26–37, Grenoble, France, May 2010.

[35] Montek Singh and Steven M. Nowick. High-throughput asynchronous pipelines for fine-grain
dynamic datapaths. In 6th International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 198–209. IEEE, Apr 2000.

[36] Montek Singh and Steven M. Nowick. MOUSETRAP: Ultra-High-Speed Transition-Signaling
Asynchronous Pipelines. In Proceedings of the International Conference on Computer Design
(ICCD), pages 9–17, Nov 2001.

[37] Kenneth S. Stevens, Ran Ginosar, and Shai Rotem. Relative Timing. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 1(11):129–140, February 2003.

[38] Kenneth S. Stevens, Shane V Robison, and A.L. Davis. The Post Office – Communication Sup-
port for Distributed Ensemble Architectures. In Proceedings of 6th International Conference on
Distributed Computing Systems, pages 160 – 166, May 1986.

[39] Kenneth S. Stevens, Shai Rotem, Ran Ginosar, Peter Beerel, Chris J. Myers, Kenneth Y. Yun,
Rakefet Kol, Charles Dike, and Marly Roncken. An Asynchronous Instruction Length Decoder.
IEEE Journal of Solid State Circuits, 36(2):217–228, February 2001.

[40] Kenneth S. Stevens, Yang Xu, and Vikas Vij. Characterization of Asynchronous Templates for
Integration into Clocked CAD Flows. In 15th International Symposium on Asynchronous Circuits
and Systems, pages 151–161. IEEE, May 2009.

[41] C. Stirling. Modal and Temporal Properties of Processes. Springer Verlag, New York, Berlin,
Heidelberg, 2001.

[42] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, June 1989.
Turing Award Paper.

[43] Yang Xu and Kenneth S. Stevens. Automatic Synthesis of Computation Interference Constraints
for Relative Timing. In 26th International Conference on Computer Design, pages 16–22. IEEE,
Oct. 2009.

[44] Eslam Yahya and Marc Renaudin. QDI Latches Characteristics and Asynchronous Linear-Pipeline
Performance Analysis. In Integrated Circuit and System Design, Power and Timing Modeling,
Optimization and Simulation, Lecture Notes in Computer Science, pages 583–592. Springer, 2006.

[45] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified signal transition graph model
for asynchronous control circuit synthesis. Formal Methods in System Design, 9:139–188, 1996.

[46] Kenneth Y. Yun, Peter A. Beerel, and Julio Arceo. High-performance asynchronous pipeline
circuits. In Second International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 17–28. IEEE Computer Society Press, March 1996.

65

	Setting and approach
	Previous Work and its Approach
	Intuition: MAX and its cutaways.
	Contributions
	Structure of the paper

	CCS as a System Description Language
	Individual objects
	Sequential Composition
	Communicating via handshakes
	Minimisation

	2phase Bundled Data Transmission
	4phase Protocol

	Aptness of CCS for Circuits at the Control Signal Level

	Modelling asynchronous pipelines in CCS
	Components for Building a Furber Stage
	The Latch Model
	Common 2phase Building Blocks
	FNC: Furber's Normally Closed stage

	Specifying max1
	Minimised FSM for max1
	Useful Liveness Properties for max1

	Experiments with max1
	MAXd: linear pipelines composed from max1.
	PPw,d: parallel pipelines composed from MAXd

	Cuts and the Design Space
	L: Output cuts
	R: Input cuts
	Cut lattices
	Representing a shape
	Homogeneous Pipeline Experiments
	Characterising homogeneous pipelines

	Mixed Pipeline Structures and Patterns
	Initial mixed experiments
	Experimental Results for Mixed Linear Pipelines
	Tabulation of LTAB, RTAB and DTAB

	Calculation of Pipeline Behaviours
	Application I: mixed linear pipe of depth 4
	Application II: mixed rings
	Application III: relating LTAB and RTAB
	Generation of RTAB from LTAB

	Extension to 4phase untimed

	From Shape to Silicon
	Overview and summary

