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Abstract

Rewriting is a common functionality in proof assistants, that allows to simplify theorems
and goals. The set of equations to use in a rewrite step has to be manually specified, and
therefore often includes rules which may lead to non-termination. Even in the case of
termination another desirable property of a simplification set would be confluence. A
well-known technique from rewriting to transform a terminating system into a terminating
and confluent one is completion. But the sets of equations we find in the context of
proof assistants are typically huge and most state-of-the-art completion tools only work on
relatively small problems. In this paper we describe our initial experiments with the aim
to close the gap and use rewriting to compute a complete first-order simplification set for
a HOL-based proof assistant fully automatically.

1 Introduction

Proof assistants are computer programs that aid the user in building a proof that can be
mechanically checked. A typical proof assistant includes a number of algorithms that perform
common proof operations in an automated way. One of such mechanisms is rewriting and
conditional rewriting (often called simplification in the context of formal proof). There are two
ways of performing rewriting in a proof assistant, depending on the working style: rewriting
provided as a forward derivation rule that lets one rewrite a theorem using (possibly conditional)
equalities and rewriting as a tactic, that uses equations to rewrite the current goal to an
equivalent goal.

To perform a rewriting step, the user needs to choose the equations to rewrite with. Typically
choosing this set is done completely manually. In certain cases, however, there exist defaults
(for example Isabelle [17] simplification set) or lists of theorems to use (for example ARITH in HOL
Light [8] or hint databases in Coq [1]). Such default sets are also defined manually, and developers
try hard to avoid creating simplification sets that are non-terminating. Unfortunately this
problem is quite hard, and for example the usual simplification set defined for many theories
in Isabelle includes rules that lead to non-termination of the simp tactic.

In order to obtain an even stronger proof technique with the help of rewriting, one can
consider normal forms of expressions with relation to some theory. Completion of rewriting
is a technique that lets us derive rewrite systems that follow given sets of equations, but are
terminating and confluent. A terminating and confluent rewrite system for a theory would give
a complete decision procedure for establishing equalities in this theory, giving a strong proof
technique.

Termination of term rewrite systems (TRSs) is an undecidable property. Nevertheless a
vast number of methods have been developed to determine termination, many of which are
suitable for implementation. For example the tools TTT2 [12] or AProVE [6] implement techniques
for automatically proving the termination of a first-order rewrite system. The termination
methods implemented by these systems are sound, but the tools may produce unsound proofs
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(for example due to implementation bugs). Therefore a number of proof certification techniques
have been developed, for example CeTA [22] which can certify termination (or non-termination)
proofs provided by a termination tool.

Likewise confluence of TRSs is undecidable in general. In the presence of termination,
however, confluence and local confluence coincide according to Newman’s Lemma [16]. Based
on this information most automatic completion tools follow a common strategy: They maintain
termination of an oriented version of an initial set of equations and try to make it locally
confluent by means of deducing and adding new consequences. If this succeeds, at some point
all critical pairs will be joinable and the tool yields a terminating and confluent term rewrite
system, which has the same equational theory as the initial set of equations. There is very
little work that bridges the gap between proof assistants and termination, the most notable
being [13].

The aim of this paper is to use rewriting techniques to automatically derive a terminating
and confluent first-order rewrite system for a proof assistant. In this research we considered
HOL Light [8] and its Multivariate [9] library, as together with the Flyspeck project (developing a
formal proof of the Kepler conjecture [7]) they form a large library of mathematical knowledge.
The completion tool we used is KBCV [21], which also features an interactive mode and the
generated completion proves may be certified by CeTA.

In the setting of proof assistants we work on higher-order terms with types whereas in the
rewrite community most tools work on first-order term rewriting systems. A commonly used
input format to termination as well as completion tools is the TPDB format1 and its XML-based
successor.2

We have implemented a translation mechanism from HOL Light to the TPDB format in order
to give the theorems present in HOL Light/Multivariate to the available rewriting tools. To give
the computed results back to HOL Light we implemented the converse translation from the TPDB
format to typed λ-terms. We proposed an interaction model between HOL Light and KBCV and
did initial experiments on deriving new theorems from the critical pairs. The initial set of 3,267
orientable equations has been passed in one go to KBCV and 305 thousand critical pairs were
found which gave rise to 167 thousand HOL equations.

The rest of this paper is organized as follows. In Section 2 we describe how the theorems
of HOL Light may be translated to first-order equations in the TPDB format. Following this we
briefly recall completion in Section 3. Our main idea — the interaction between HOL Light and
KBCV — is presented in Section 4. Next we present our experiments in Section 5. Finally we
conclude in Section 6.

2 Translation from logic to rewriting

The first issue in implementing a translation mechanism from theorem statements to rewriting
is to choose which theorem statements can be used in a rewriting setting. Modern completion
tools only support unconditional equations, so we choose to work only with unconditional
orientable equations that can be encoded in a first-order format.

We start with all the theorems available in HOL Light/Multivariate. To obtain a list of all these,
we use the update database functionality of HOL Light, which can produce a list of name–
theorem pairs accessible from the top level by analyzing OCaml’s internal data structures. We
proceed by eliminating repetitions (theorems that have the same statement, but have been

1https://www.lri.fr/~marche/tpdb/format.html
2http://www.termination-portal.org/wiki/XTC_Format_Specification
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assigned different names), and selecting only the theorems that have the form of unconditional
equations (possibly universally quantified).

The two most common approaches for eliminating λ-expressions from higher-order logic
formulas are to use λ-lifting or to encode them as combinators. Such approaches are often
used to translate HOL to first-order logic [15, 10]. Lambda lifting does not seem to be possible,
as in rewriting we are not able to quantify inside a term. As the theory of SKI combinators
is equational, it might be possible to obtain a translation of λ-expressions to combinators.
In our first experiments we chose to translate the λ-expressions which can be expressed as
rewrite rules using simple transformations (β-reduce all redexes in the theorem statements and
η-expand equalities that have a λ-expression on one of the sides using extensionality) and to
ignore the rest of the equations.

Next we define the weight function, as a partial function on terms that returns polynomials
over variables (we will ignore the equations for which the function is undefined). The function
that we present ignores the types of the terms completely. In case of type-aware encodings the
function would need to include the type variables in the resulting polynomial.

Definition 2.1 (weight of a higher-order logic term).

w(t) :=


1 if t is a constant

x if t is a variable x

w(l) + w(r) if t = l r

undefined if t = λy.s

Given such a weight function, we can filter the orientable equations. We consider a HOL
theorem as an orientable equation, if after specializing all the top level universally quantified
variables the weights of the left- and right-hand sides of the equation are defined and one of
them is strictly greater than the other in the usual polynomial order sense. Not all equations
are orientable, for example the usual associativity or commutativity theorems have the same
polynomials returned by w for both sides, so they are not orientable.

In order to eliminate the higher-order applications, we use the apply functor. We employ the
algorithm introduced by Meng and Paulson [15]. For each higher-order constant c we compute
the minimum arity nc with which it appears in a problem, and the first nc arguments are passed
to c directly. If the constant is also used with more arguments in the problem, apply is used.
Blanchette [4, p. 105–106] gives simple examples when this encoding introduces incompleteness
in the encoding to ATP formats. Due to the lack of general quantifiers, however, this works
quite well for rewriting.

We can now proceed to encode the equations in the TPDB format. A file in this format starts
with a number of variable declarations, followed by a number of equations. To synchronize the
symbols appearing in the theorems, the TPDB export declares the signature of the constants,
functions and variables (for polymorphic constants or functions only one symbol for all occur-
rences; this could be strengthened with monomorphisation). The variables present in all the
equations are written to the file, followed by the equations oriented in the direction implied by
the weights. In order to verify our implementation of the polynomial ordering we proved the
following theorem.

Theorem 2.1. The theorems of HOL Light/Multivariate orientable by w(t) and translated to first-
order rewriting form a terminating TRS.

Proof. We have used TTT2 to find a proof that the system is terminating. The automatic strategy
is quite slow. Limiting TTT2 to polynomial interpretations (matrix interpretations of dimension
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DEDUCE
(E ,R)

(E ∪ {s ≈ t},R)
if s R← u→R t

COMPOSE
(E ,R∪ {s→ t})
(E ,R∪ {s→ u}) if t→R u

COLLAPSE
(E ,R∪ {s→ t})
(E ∪ {u ≈ t},R)

if s
A→R u

ORIENT
(E ∪ {s

.
≈ t},R)

(E ,R∪ {s→ t}) if s > t

DELETE
(E ∪ {s ≈ s},R)

(E ,R)

SIMPLIFY
(E ∪ {s

.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s→R u

Figure 1: The inference rules of completion.

1) over the naturals, however, is able to find a proof in a reasonable time (about 25 minutes). In
particular the SMT prover invoked by TTT2 does not find a satisfiable assignment for a bit-width
of 5, but finds one for a bit-width of 6. Parsing the system (consisting of a few thousand rewrite
rules) takes the biggest part of the running time of TTT2. We used CeTA to certify that the proof
found by TTT2 is indeed a valid termination proof of the system. CeTA requires about 10 minutes
to check the proof.

We have also implemented a combinator parser, which is able to read files generated by
termination and confluence tools and output HOL Light preterms. When reading the TPDB file,
applications give rise to Combp preterms and constants or variables give rise to Varp preterms.
When exporting the HOL theorems as a TPDB file, we have declared a signature which is used
to map the TPDB concepts (names of functions, constants, variables) back to their HOL coun-
terparts. Such preterms can later be type-checked by the standard HOL Light term parser. Due
to an encoding that does not preserve types, some of the preterms may fail to type-check (and
as we will see in Section 5, some will fail). The rewrites performed on the KBCV side are not
type-valid in the HOL setting, therefore such equations do not give rise to valid HOL critical
pairs and can be forgotten.

Given a terminating rewrite system, we can proceed to completing the system.

3 Completion

We briefly recall the basics of completion. See for example [2] for a comprehensive introduction
to completion and term rewriting.

Completion is a procedure which takes as input a (finite) set of equations E and optionally a
reduction order > (older tools need the reduction order in advance whereas modern tools try to
construct the reduction order dynamically with the help of external termination tools, see [23])
and attempts to construct a terminating and confluent TRS R with the same equational theory
as E . Provided the completion procedure succeeds, two terms are equivalent with respect to E
if and only if they reduce to the same normal form with respect to R, that is, R represents a
decision procedure for the word problem of E .

The procedure generates a finite sequence of intermediate TRSs which constitute approxi-
mations of the equational theory of E . Following Bachmair and Dershowitz [3] the completion
procedure may be modeled as a system of inference rules (see Figure 1). These inference rules
work on pairs (E ,R) where E constitutes a finite set of equations and R is a finite set of rewrite
rules. The goal of the procedure is to transform an initial pair (E ,∅) into a pair (∅,R) such
that R is terminating, confluent and equivalent to E . A completion procedure based on these
rules may either succeed (find R after finitely many steps), loop indefinitely, or fail. In Figure 1
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SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

TTT2to NF

new CPs

YES

choose
s ≈ t

to NF

Figure 2: KBCV’s automatic completion procedure.

a reduction order > is provided as part of the input (whereas most modern completion tools

construct this ordering on the fly as described above). We write s
A→R u to express that s is

reduced by a rule ` → r ∈ R such that ` cannot be reduced by s → t. The notation s
.
≈ t

denotes either of s ≈ t and t ≈ s.
In order to make the simplification set more complete we want to use an automatic comple-

tion tool. Most modern completion tools use some variant of the above inference system and
then commit to a specific strategy to implement a completion procedure. There are several
such tools available today, e.g., Slothrop [23], MKBTT [18], Maxcomp [11], and KBCV [21]. One of
the main issues was that most of these tools have not been designed to handle problems with
a magnitude counting thousands of equations. In the end we decided to use KBCV for several
reasons:

• It has both an automatic and an interactive mode, where the completion inference rules
may be applied freely.

• It records a history [19] of how rules were applied, which is useful to reprove the corre-
sponding equations in HOL Light.

• Its parser is fast enough to load the thousands of equations of the problem at hand in
reasonable time.

• One of the authors is the main developer of KBCV so it was relatively easy to adapt the
tool and optimize it [20].

Tools like KBCV typically work on small problems, e.g., those which can be found in the TPDB
problem database.3 When given a problem KBCV tries to complete it by issuing the inference
rules of completion in the order depicted in Figure 2.

First SIMPLIFY is used on all equations as long as a normal form with respect to the current
TRS R is reached. Next all trivial equations, i.e., equations where the left- and right-hand
sides are the same, are deleted. Now the tool checks whether E is empty, if this is the case R is
complete and the procedure finishes. Otherwise KBCV chooses an equation which it will try to
orient. The heuristic here is to select an equation with minimal left- and right-hand sides. The
depicted procedure actually runs in two threads in parallel. The first of those always tries to
orient equations from left to right and only if this does not succeed the other way round. The

3http://termination-portal.org/wiki/TPDB
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Figure 3: Control and data flow between HOL Light, KBCV, and external termination tools.

second thread behaves dually. KBCV implements a fast version of a lexicographic path ordering
to orient equations. Only if this does not succeed it gives the problem to TTT2 to establish a
terminating system which also comprises the newly oriented equation. To keep the resulting
system as small as possible KBCV now applies COMPOSE until all right-hand sides of rules are
in normal form with respect to the current TRS R. Next it also simplifies the left-hand sides
of rules using COLLAPSE. Finally DEDUCE computes critical pairs between left-hand sides of
rules and adds those to the set of equations.

4 Interaction between HOL Light and KBCV

In this section we describe how the steps performed in the completion procedure (described in
the previous section) correspond to operations in HOL. For this we run KBCV in its interactive
mode. The interaction is depicted schematically in Fig. 3.

Exporting the HOL Light simplification set. In Section 2 we have already described the
export of HOL Light equations to the TPDB format. We export all the equations that can be
written in the first-order rewriting format. We separate the orientable ones from the non-
orientable ones but write the latter as well (as they may become orientable after simplification).
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Importing the rewrite system to KBCV. KBCV can directly read the TPDB file. We issue
the orient command to orient the part of the system which could be oriented in HOL. Because
we already know that our chosen orientation will be terminating we set KBCV to use an external
termination tool that will always output “YES”.

Composing the rewrite rules. Given that the right-hand side of a rewrite rule can be
simplified with another rule the same operation can be performed in HOL assuming that the
types are correct. This means that we will later have to check that the derived rules correspond
to provable equations in HOL Light.

Collapse of rewrite rules. This operation works in a similar way as compose, only that it
produces equations which we will have to give back to HOL Light to orient and prove terminating.

Deducing critical pairs. A critical pair is a derivable equation which arises from the overlap
of left-hand sides of two rules. Some of those pairs found by KBCV will not be well-typed. To
improve the performance of SIMPLIFY we can remove such ill-typed pairs by parsing and type-
checking them in HOL Light. In our experiments we decided to use type-checking rather than
encoding of types in terms for two reasons: First, an ill-typed pair may give rise to a well-typed
equation using unification. For example an equation where we have list(α) on one side and
list(num) on the other side will give a well-typed equation by instantiating α to num. Second,
by throwing away not well-typed pairs we may remove equations that are needed to preserve
confluence. We have already discussed at the end of Section 2, why such pairs can be forgotten.
completion procedure.

Simplify and Delete. Simplify rewrites the left- and right-hand sides of equations to normal
form in order to eliminate joinable critical pairs. At this point the information about newly
obtained equations to orient can be send back to HOL together with their recorded history which
allows to reprove them.

Now we have a somehow more complete approximation of the initial theorems in HOL Light
for which we want to repeat the loop until we arrive at a complete system.

5 Experiments

We did our experiments with HOL Light revision 153 from December 2012 and Flyspeck revision
3130 from March 2013. The experiments were performed on a 48-core server with AMD Opteron
6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. HOL Light uses only one
process, whereas KBCV uses threads to exploit all the available cores.

The number of all theorems as obtained using the update database mechanism is 17,807.
After removing repetitions and considering only the universally quantified equations there are
6,273 theorems. Our weight function returns a defined value for 4,186 theorems. Our reduction
order divides these in two parts: the 3,267 equations that are orientable and 919 that are not.

To verify our heuristic order, we used TTT2. We have exported the orientable equations in
the TPDB format and having used TTT2 with polynomial interpretations, we have found a proof.
The proof is 2.6MB in size and we have used CeTA to certify it.

We next proceeded by loading the TPDB file in KBCV. Since we already have established
termination of these rules beforehand orienting them only takes a view seconds. Deducing all
critical pairs between the left-hand sides of the oriented equations proved to be the first hurdle
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for KBCV. The previous version of KBCV did not finish the computation of critical pairs in a few
days. To speed it up we introduced parallelization. Now KBCV is able to compute all 305,708
critical pairs in about two hours.

The critical pairs can be exported together with their history. As described in Section 2,
we have implemented a combinator parser to read back the KBCV history output as HOL Light
terms. Only the well-typed ones can be properly parsed. Trying to parse the terms takes about
4 hours and 137,888 of the newly generated equations are ill-typed. The indices of the ill-typed
equations are passed back to KBCV, which can in turn remove them.

The next bottleneck was SIMPLIFY. Using the previous version of KBCV, simplification of
this big number of equations was infeasible. With the help of caching techniques and paral-
lelization we are able to delete the joinable critical pairs; this, however, takes a few days. The
remaining step to close the cycle is to reprove the equations obtained using rewriting techniques
in HOL Light. With the history of performed simplifications, this is straightforward but has not
been done yet. So far we have performed only one iteration, so the TRS is not a confluent one.

Two example critical pairs found by KBCV are (the numbers are the internal indices used
to reference equations in KBCV, e.g., 309551 is a consequence of theorems 49 and 882 from the
initial set):

309551 : i(i(realu_lt(), i(i(realu_add(), x), y)), i(realu_ofu_num(), u_0())) =

i(i(realu_lt(), x), i(realu_neg(), y)) : 309551 : 49, 882,

which corresponds to the equation x+ y < 0⇐⇒ x < −y and

309569 : i(i(realu_lt(), i(i(realu_add(), x), y)), i(Re(), ii())) =

i(i(realu_lt(), x), i(realu_neg(), y)) : 309569 : 139, 882,

which corresponds to x + y < Re(i) ⇐⇒ x < −y. The latter of the two theorems will be
simplified using the rule that rewrites Re(i) to 0 and will be discarded.

6 Conclusion

This paper presents initial experiments in automatically deriving a terminating and confluent
simplification set for HOL Light using tools coming from termination and completion research.
We started with all the (unconditional) equations present in HOL Light/Multivariate and using a
manually defined order we proved termination for a large subset of the rules. We have presented
a possible loop for deriving confluence and we have done some experiments with the first loop
of the confluence derivation.

The simplification set that we derive, includes a number of equations translated to first-
order logic. Because higher-order matching is used for rewriting in most proof assistants,
the properties of the simplification set (like termination or confluence) derived for first-order
translations do not immediately give rise to the same properties for the original rules. There
are at least two ways to proceed in order to preserve the termination and confluence for the
obtained HOL simplification set:

• Use first-order rewriting in the proof assistant;

• Further restrict the initial simplification set to the first-order theorems.

In the future, the first thing we intend to do is to automatically prove the equations derived
by KBCV in HOL. Thanks to recording completion we know the equations used to derive the new
ones, so we have all the necessary components to use the existing HOL Light decision procedures.
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This will complete the cycle presented in Section 4 and will allow executing more iterations of
the completion procedure. Further, the remaining efficiency bottlenecks (on both HOL Light and
KBCV sides) need to be taken care of to make the procedure practical.

The approach that we presented is applicable not only to the large HOL theorem set, but
also to an arbitrary subset of it. For example, one might consider rewrite rules concerning
one specific domain of mathematics. In case completion for the whole set turns out to be
unachievable (for such a big set it might not be possible to iterate the loop until the result is
stable), the approach can be applied to the particular area, automatically deriving a decision
procedure.

We intend to try out different encodings to rewriting, that would take types into account.
Certain approaches presented for example in [5] could be directly applicable. Next, extensions
to rewriting, like higher-order rewriting [14], conditional rewriting, or AC rewriting can be
considered. Finally, we intend to investigate, how useful the automatically derived simplification
set is for proving real HOL Light problems.
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