EPiC Series in Computing EPiC
Computing

Volume 50, 2017, Pages 51-63

GCALI 2017. 3rd Global Conference on Artificial Intelligence E ; i E

Replaceability and the Substitutability Hierarchy for
Constraint Satisfaction Problems

Eugene C. Freuder and Richard J. Wallace

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Cork, Ireland
{eugene. freuder, richard.wallace}@insight-centre.org

Abstract

Problem simplification is a topic of continuing interest in the field of constraint satisfaction. In
this paper we examine properties associated with the basic idea of substitutability and show how
certain forms of substitutability can be organized into a strict hierarchy. One of these properties, here
called replaceability, has been identified by other authors as being of special interest. In this work we
confirm these earlier claims and show that replaceability is significant because it is the most general
property in the hierarchy that allows inferences from local to global versions of this property. To make
use of this discovery, we introduce two algorithms for establishing “neighbourhood replaceability”,
and we present an initial experimental examination of these algorithms including ways to improve
their performance through ordering heuristics and various kinds of inference.

1 Introduction

Simplifying problems by using inference to remove values or combinations of values has been a primary
approach to combinatorial complexity in constraint satisfaction problems. The removal of inconsisten-
cies, which will not eliminate any solutions, has been most thoroughly studied. However, often a single
solution suffices, and methods such as interchangeability have been introduced, which remove some,
but not all, solutions.

In practice, it can be very useful to remove values that we can identify as dispensable in some
tractable or at least reasonably efficient manner, either in preprocessing before search, or dynamically
during search. This is, for example, what the basic process of ensuring arc consistency does. (In that
case, removing an inconsistent value will not remove all solutions for the simple reason that the value
will not participate in any solution.) But we can also remove values if we know that other values can
serve as replacements in at least some solutions. This is the idea of substitution, which is the topic of
the present paper. A special case occurs when either value can be substituted for the other; however, the
important idea for purposes of simplification is substitution and removal.

A number of properties based on equivalence or subsumption relations with respect to solutions have
been identified. The first paper on this subject defined two basic properties involving either equivalence
or subsumption of single values; these were called interchangeability and substitutability, respectively
[2]. Since then a large collection of related properties have been proposed, and subsequent to this
various dominance and incomparability relations have been established; these are summarized in [7]

C. Benzmiiller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 51-63

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Some years ago Bordeaux, Cadoli, and Mancini proposed a general framework for these and other
properties [1]. They identified what they considered a key concept that they called “removeability” and
that we will refer to as replaceability, which is a generalized form of substitutability. More recently,
Freuder attempted to enlarge this framework even further, using the idea of “dispensability” [3], which
simply means that removing elements of a problem will not remove all solutions.

In the present work, which can be seen as an adjunct to the work of both [1] and [3], we focus on
the basic property of substitutability and its generalizations, all of which involve relaxing the conditions
under which we may remove a given value (or set of values). The reason for considering this special
subset of properties, which forms a relatively small subgraph in the network of properties discussed by
[71, is that this set of properties has a well-formed set of interrelations so that they can be arranged in a
single series (i.e. a total order, or more simply a hierarchy) in which the substitutability property pertains
to progressively more values. In addition, this work extends the characterization of the replaceability
property highlighted by [1], and shows that it has certain ‘maximal’ features within the series with
regard to computability. This confirms the contention of these authors that this is, indeed, a property of
special significance.

In the following sections we first review earlier work that presented generalizations of substitutabil-
ity. Then we present our basic framework, centered on the concept of replaceability, but attempting to
situate it within existing work. Then we introduce local forms of this property that allow us to devise
working algorithms that can achieve these forms. This is followed by some experimental tests. We
then discuss how replaceability can sometimes be inferred to reduce overall effort. We end with some
conclusions.

2 Generalizations of Substitutability

A constraint satisfaction problem (CSP) involves choosing values for a set of variables, V', which satisfy
a set of constraints, C', which specifies permissible combinations of values for subsets of the variables.
Each value selected for variable V; must come from a domain of values D; associated with that variable.
A choice of values for a subset, .S, of the variables is an instantiation of S. If the instantiation is consis-
tent with the constraints involving .S, then we say that it satisfies those constraints. An instantiation of
all the variables, V', which satisfies all the constraints is a solution.

The basic property of substitutability in CSPs was first characterised in [2]. Here, we will use an
equivalent definition that corresponds to later definitions in which the focus is on the value discarded.

Definition 1. Given a value v in domain D; of variable V;, if for any solution in which v appears,
we can substitute v and still have a solution, then v has the property of substitutability and value u is
substitutable for v.

The same work introduced a local form of substitutability, called neighbourhood substitutability.

Definition 2. (From [2]) For two values » and v belonging to the domain of variable X, u is neighbour-
hood substitutable for v iff for every constraint on X, if v satisfies the constraint then w also satisfies it.

This latter property had two important features: (i) neighbourhood substitutability is sufficient (but
not necessary) for full substitutability, (ii) neighbourhood substitutability can be determined in polyno-
mial time. Proofs of these features can be found in [2].

Given this interesting property, one important question is whether we can isolate its general fea-
tures. In addition to elucidating the original property itself, this may allow us to identify more general
properties that may allow even greater degrees of problem simplification.

In the past, there have been a few efforts in this direction. The earliest is the work by Jeavons et al.,
who defined what they called “generalized substitutability” [5]. Later Bordeaux et al. defined a similar

52

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Figure 1: Example showing 3-tuple substitutability without substitutability with respect to single values
of the tuple. In this figure, circles represent variables, lines constraints between variables. (So, for
example, constraint C; holds between variables V; and Vj.) Values to be substituted are inside the
circles, substituted values above and to the right of each circle.

but simpler concept that they called “removability” [1]. In both cases, the basic idea is that, given value
v that can appear in some solution, then for any solution that v appears in there is some other value that
can be substituted for v, giving another valid solution. (A more formal definition is given in the next
section and later the relation between the two approaches to this idea is discussed at length.)

In [3], the more general concept of dispensability was introduced.

Definition 3. An instantiation is dispensable if removing it will not remove all solutions to the problem.
A set of instantiations is dispensable if removing them all will still not remove all solutions to the
problem.

However, since this idea goes beyond the requirement of substition in any form (an instantiation
can be dispensable without being related to any substitutable values), it is tangential to the main con-
cerns of the present paper. Of more immediate relevance is the terminological problem raised by the
introduction of this new concept. In this paper, Freuder pointed out that, since the ordinary meaning of
removability is synonymous with dispensability, the former term is somewhat misleading in its original
context. He suggested the term “onto-substitutability” instead. Here, we will use what we think is a
more perspicuous term: “replaceability”’, which seems to have exactly the right connotations.

More recently [8] also discussed the concept of replaceability. They also introduced a generalization
that they called “joint interchangeability”.

Definition 4. A set of values S C D; is joint-interchangeable with a set of values T' C D; iff S is
substitutable by 7" and 7" is substitutable by S.

Note that this is a restriction on the Jeavons et al. concept in that it deals with values in one domain.

In this paper we will not make use of generalizations of substitutability that involve k-tuples of
values with £ > 1 and which can involve sets of values or tuples to be replaced. This is because they
entail complexities in computation and representation that will make it difficult to use them in practice.
Here, we illustrate some issues when k-tuples are being considered for replacement.

To begin with, we can show that substitutability in terms of k-tuples over a variable set R does not
imply that individual values in the set are substitutable. This can be shown by example (see Figure 1).

Here, all domains have values a, b, c. Suppose that the 3-tuple (b, a, b) can be substituted for (a, b, ¢),
where the assignments are made as shown in the figure. Also, suppose that constraint C;;, includes these
tuples: {(a,b), (a,c), (b, b)}, while constraint C, includes these tuples: {(c,a), (c,b), (b,b), (b,c)}.
An examination of the tuples will show that the only value in Dy, that supports both @ in D; and ¢ in
D, is b. In addition, the listed tuples are consistent with the substitutability of (b, a,b). However, if we
consider a € D; by itself, then we can ascertain that it is not neighbourhood substitutable (and hence not
substitutable) with respect to b. Since these arguments can be extended to include each variable in the

53

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

set R, we can have a situation where the k-tuple can be replaced while this is not true for any individual
value. In other words, the property of substitutability when applied a k-tuple is not decomposable.

One result of this is that ascertaining that a set of k-tuples is substitutable for another set is likely to
involve some fairly unpleasant combinatorics. Consequently, it is reasonable to focus on substitutability
properties with respect to single values, which is what we will do in the remainder of the paper.

3 A Substitutability Hierarchy

We now define the other substitutability properties in our hierarchy. First, we define the central concept:

Definition 5. (From [1]) An instantiation v is replaceable if for any solution involving v, there is some
other instantiation that can be substituted for v and still have a solution.

In other words, a value is replaceable if any value can be found to substitute for it in any solution,
but it is substitutable only if a single other value can be substituted for it in every solution. Obviously,
this is weaker than the original substitutability property in that the latter implies replaceability, while
replaceability does not imply substitutability. At the same time, it is more general since any values that
can be removed on the basis of substitutability are also replaceable, but not vice versa.

Still weaker (and more general) forms of substitutability can be defined.

Definition 6. An instantiation v has the property of k-restricted substitutability (or simply restricted
substitutability) iff v is in some solution, and for some subset of k£ > 2 solutions it is in there is another
instantiation that can be substituted for it.

Definition 7. An instantiation v is minimally substitutable iff if v is in any solution there is some other
instantiation that can be substituted in at least one solution to make a valid solution.

Minimal substitutability is a special limiting case of restricted substitutability, where k = 1.

The hierarchy formed by these properties is depicted in Figure 2. Inconsistency is included as a
degenerate case of substitutability, since if value v is inconsistent then any value in any solution can be
substituted for it without losing any solution.

Note that the weakening and generality mentioned above holds over the entire hierarchy. That is,
each property in the hierarchy is implied by all those below it, and it in turn implies those above it in the
hierarchy. And as we proceed up the hierarchy, we can remove more instantiations. But it also becomes
harder to recover the solutions lost by discarding values.

Proposition 1. If a value can be discarded based on a given property in the substitutability hierarchy,
then it can be discarded based on any property higher in the hierarchy.

There is an important division in the series. Up to and including replaceability, the property in
question is defined with respect to all solutions in which instantiation v appears, i.e. all solutions
supported by a replaceable value v are still supported.

Proposition 2. Replaceability is the most general form of substitutability for which all solutions con-
sistent with a discarded value are consistent with some remaining value.

Proof. By definition, if a value is replaceable then all its associated solutions are still supported by
at least one other value in the same domain. If even one such solution becomes unsupported after
discarding the value, then the associated property is restricted substitutability, which does not guarantee
that all solutions are still supported. O

It can therefore be said that replaceability is a “maximal property” with respect to this feature.

Now we will show that the “generalized substitutability” property of [5] is essentially the concept
of replaceability in a somewhat different form. These authors give their definition of generalized substi-
tutability in terms of two functions o and 7, which are selection and projection functions, respectively.

54

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

More
pruning

[MINIMAL SUBSTITUTABILITY

some value in at least one solution

L

'Y

[RESTRICTED SUBSTITUTABILITY |
some value in some solutions

>

REPLACEABILITY
some value in any solution

'Y

SUBSTITUTABILITY
same value in any solution

>

INCONSISTENCY

any value in any solution

Easier to
recover lost
solutions

Figure 2: A substitutability hierarchy.

We are given a problem P and two sets of variables X and R, where R C X. If we consider a set
of instantiations S of X and a set of instantiations 7" of R, then o (.5) selects the set of labels in S
whose projection on R matches some instantiation in 7', and 7 applied to the output of o restricts the
instantiations to those of the variables in R. Their definition is as follows:

Definition 8. Given a pair of instantiations 7} and 75 of R, T5 is substitutable for 7T} (in their generalized
sense) if

nx—r(or, (Sol(P))) € mx_gr(or,(Sol(P)))

In words, 75 can be substituted for 7} if the labels for the variables other than those in R (namely,
X — R) that are associated with the selection based on 75 form a superset of the labels for X — R
associated with the selection based on 77 .

That this form of substitutability is a generalized form of replaceability in our terms can be seen by
setting 77 in the definition to a single instantiation of R. In this case, 75 becomes a set of instantiations
of R that support all of the instantiations elsewhere in the problem that 73 supports. This is the same as
saying that one can replace 7} in any solution with some other instantiation. Thus we have the following
equivalence.

Proposition 3. If 77 is a singleton, then the instantiation in 77 is substitutable by 75 in the sense of [5]
iff it is replaceable.

Proof. If the instantiation in 77 is replaceable, then all of the projections on the remaining variables in
the set of solutions in which this instantiation occurs can be supported by some set of instantiations of R.
But if this latter set is chosen as T» then Definition 8 is satisfied. Conversely, any 75 that is substitutable
in the sense of [5] for the instantiation in 77 must contain a set of instantiations that can support any

55

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

projection on X — R consistent with the instantiation in 73 by definition. But this is equivalent to the
statement that these instantiations can replace the instantiation in 77 in any solution in which it appears.
O

The concept in [5] generalizes the present concept of replaceability in two ways. In the first place,
T is no longer necessarily a single instantiation, but a set, as already noted. Secondly, the formulation
of [5] is more general in some ways with respect to the possible 75 sets associated with a given T}.
For example, taking single values, consider the case where b can be substituted for a in all solutions,
i.e. 71 = a and T = b. Suppose further that another value c in the same domain has no solutions in
common with a. Then [5] would allow the set b, ¢ to substitute for a. While this situation is not ruled
out by our formulation, it does involve a value that is ‘irrelevant’ to the definition of replaceability given
above (and by [1]). This leads to the following observation.

There is a difference in perspective between [5] and the present work that is potentially significant.
They view the replaceability property from the point of view of the instantiations that can substitute for
a given set of instantiations. We (and [1]) on the other hand, view replaceability in terms of the instan-
tiations that can be discarded. Despite the elegance and greater generality of the former perspective, in
some ways the latter perspective is more perspicuous. It may also lead to more focused (and therefore
effective) algorithms as will be seen later in this paper.

Removing instantiations based on these properties, either in preprocessing or dynamically during
search, can reduce search effort. This has been amply demonstrated in practice. In general, however,
determining various forms of substitutability can be as intractable as solving the problem. One way to
address this is to consider restricted classes of problems, where the computation of forms of dispensabil-
ity is tractable [1]. We focus here instead on situations in which a substitutability property with respect
to a subproblem implies this property for the full problem, and thus the complexity is limited by the size
of the subproblems we consider.

4 Substitutability Properties and Local Reasoning

Studies of inconsistency and substitutability have shown that tractable forms of these properties exist
based on reasoning about subproblems that involve only a subset of the variables in the original problem.
Here, we show that some of these ideas can be extended to more general forms of substitutability.
For brevity, we restrict the discussion to subproblems based on closure (defined below), although it
is also possible to reason about induced subproblems in a way that is analogous to k-consistency and
k-interchangeability. However, it is not yet clear that the latter ideas can yield effective algorithms.
Bordeaux et al. [1] claim that replaceability cannot be “detected efficiently, but incompletely,
through local reasoning”; this, they say, justifies the extensive use of properties like inconsistency and
substitutability, which can. The paper also raises “an interesting open issue: do there exist new (i.e.,
other than substitutability and inconsistency) properties for which local reasoning is sound and which
imply removability”. However, they use a narrow definition of “local reasoning”. Thus, their defini-
tion of soundness requires one to consider “all subsets of constraints C; C C,...,Cy C C such that
Uie1..x Ci = C”. Soundness itself requires that for all such collections of subsets, if the property holds
for all (or for some properties for at least one of them), then it also holds for the complete problem. This
definition leaves open the possibility that there may be particular collections of subsets for which local
reasoning is sound. Here we show that for “closure subproblems” we can define sound methods that can
be applied to properties as general as replaceability.
Definition 9. Let S be a subset of the variables of problem P, and P.S be the subproblem induced by
those variables. The closure of PS, CPS, is the subproblem induced by S and all the variables that
share a constraint with a variable in S. Call the variables of S the core variables, and the others in CP.S
the frontier variables.

56

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Definition 10. An instantiation of variables S is closure-replaceable if it is replaceable with respect to
the closure of the subproblem induced by S.

Closure-replaceability is related to the concept of local substitutability defined in [5], which again
is a replaceability concept. Since our variable-based concept of closure includes any set of variables
that together are the variables associated with a given constraint, the present concept is in some respects
more general. On the other hand, since the [5] concept considers sets of instantiations that might be
replaced, in this respect it is the more general concept.

Proposition 4. Closure-replaceability implies replaceability.

Proof. The basic idea is that it is necessary and sufficient to have ‘support’ in the core for every instan-
tiation of the frontier that can appear in a solution of the closure. Any solution of the entire problem
must contain a solution of the closure, and the rest of the problem only interacts directly with the
closure through the frontier. Given a problem P, and an instantiation v for variables .S that is closure-
replaceable, where C'PS is the closure. Suppose sp is a solution of P that contains v; sp must also
contain a solution, scps, to C'PS that includes v. Since v is replaceable with respect to C'PS, there is
some other instantiation u of S that can be substituted for v in scps yielding another solution for C PS.

When we substitute u for v in sp we obtain another solution for P, since the constraints involving S are
allin CPS. O

Of course, in general the closure can be the entire problem, but often that will not be the case.
Consider, for example, binary CSP’s where S consists of a single variable. The closure will be the
subproblem induced by that variable and all the neighbouring variables in the constraint graph. If the
degree of the constraint graph is bounded by some constant k&, or if we restrict our attention to variables
with k or fewer neighbours, then the complexity of the effort required to look for closure-replaceable
values is correspondingly bounded.

Definition 11. An instantiation of a single variable V' is neighbourhood replaceable if it is replaceable
with respect to the closure of V.

The next proposition suggests that relations analogous to that of Proposition 4 will not be possible
for properties that are more general than replaceability.

Proposition 5. If a closure-property of an instantiation does not imply that it has a viable substitute
instantiation in all valid tuples within the closure, then the closure-property cannot be extended to the
entire problem.

Proof. If there is one valid tuple in which no substitution can be made, then if this is the only tuple that
can be extended to a full solution, the property will not hold for the full problem. O

Corollary. Replaceability is the most general property of an instantiation that can be inferred from a
closure to the entire problem. In other words, it is the maximal property for which this feature holds.

A form of singleton arc consistency (SAC) was proposed recently that is also based on the notion of
closures [9]. In this form of SAC, arc consistency is established with respect to the subgraph formed by
a variable and its neighbours. Here again .S is a single variable, X;, and each of its values is considered
singly. If, for a given value a in the domain of X, arc consistency processing removes all values
from a domain, then this value is neighbourhood inconsistent and can be removed. But being singleton
neighbourhood inconsistent, it is also neighbourhood-replaceable.

Proposition 6. Neighbourhood replaceability implies neighbourhood singleton arc consistency.

Although space does not permit further discussion, these ideas can be extended to n-ary constraints,
with some adjustments or exclusions for cases where a subset of neighbouring values forms a subset of
the scope of a constraint that does not include the variable with the replaceable value.

57

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Repeat
Set no-change to true
Set Q to list of all variables
While not empty Q
Remove variable V from Q; set S to neighbours of V
For each value v in domain of V
Set domain of V to {v}
If arc-inconsistent({v} U S) or replaceable(v,S)
Remove v from domain
0 Set no-change to false
1 Until failure or no-change

— = 0 00 W AW~

Figure 3: CNR-1 algorithm for neighbourhood replaceability.

S Neighbourhood Replaceability Algorithms

Replaceability can be computed locally in a manner analogous to the local computation of neighbour-
hood inverse consistency [4]. As shown in the previous section, effective reasoning on this basis is
possible even with a property as general as replaceability; hence, the strategy we will focus on in this
section involves using closure subproblems to deduce replaceability.

Although other proposals have been made for computing replaceability, these are either meant to
find the generalized form specified by [5], or they repeatedly compose neighbourhood solutions using
join operations [8], which requires more elaborate data structures and is equivalent to the all-solutions
search that our algorithms perform. It is therefore unlikely that these approaches will be more efficient
than the depth-first algorithms that we present. Since to our knowledge these algorithms have not been
implemented and tested, the algorithms described here are the first for which this has been done.

Two algorithms have been devised for establishing neighbourhood replaceability. Both are desig-
nated as “consistent neighbourhood replaceability” (CNR) algorithms because they remove all values
that are locally replaceable including arc-inconsistent values. In its full form CNR thereby incorporates
neighbourhood SAC.

The first CNR algorithm, called CNR-1, uses an AC-1 style procedure in which all values in the
problem are repeatedly tested for replaceability until no value is discarded. In the implementation of
this algorithm, the replaceable procedure uses a MAC-style search (MAC=maintained arc consistency)
to find all solutions for the subproblem, and for each solution it seeks a value from the current domain
that can replace value v. Pseudocode for this algorithm is shown in Figure 3.

Proposition 7. The CNR-1 algorithm is sound in that it is correct, complete, and always terminates.
Proof. Correctness. Since neighbourhood replaceability is tested directly, the algorithm will only dis-
card values that have this property.

Completeness. Since CNR-1 checks all values in the problem, any values that are replaceable in the
original problem will be discovered. In addition, since CNR-1 checks all values in the problem subse-
quent to any deletion (i.e. in the next repeat), any values that become replaceable because of deletions
will be discovered in the next iteration of the repeat loop.

Termination. Since by definition the problem has only a finite number of values that might be replaced,
the algorithm will always terminate. O

A second algorithm, called CNRQ, uses a queue updating mechanism in place of the repeat loop
used by CNR-1. Pseudocode for this algorithm is shown in Figure 4.

Proposition 8. The CNRQ procedure is sound and achieves the same results as CNR-1.

58

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Set Q to list of all variables
While not empty Q and not failure
Remove variable V from Q; set S to neighbours of V
For each value v in domain of V
Set domain of V to {v}
If arc-inconsistent({v} U S) or replaceable(v,S)
Remove v from domain
Put neighbours of V in Q if not there already

0NN AW —

Figure 4: CNRQ algorithm for neighbourhood replaceability.

Proof. Correctness. Since neighbourhood replaceability is tested directly, the algorithm will only dis-
card values that have this property.

Completeness. If values are replaceable on a given pass, since this property is tested for each value
(line 6), such values will always be discovered. The only way in which a formerly irreplaceable value
could become replaceable is for neighbouring solutions in which it participates to be lost, so that for
the remaining solutions it is replaceable. This can only happen if values in neighbouring variables are
discarded. But if this happens the variable with this value in its domain is put back on the queue; hence
the alteration in status of the value will be detected.

Termination. Since all neighbourhood replaceable values will be detected the algorithm will terminate
when this is accomplished and the queue is emptied or when a domain is wiped out. O

Space does not permit further discussion, but it may be noted that replaceability algorithms do not have
unique fixpoints.

6 Some Experimental Results

The main purpose of this paper was to present a new framework for thinking about problem simpli-
fication, as well as some means of achieving it. From a practical perspective, we expect that higher-
order properties such as replaceability will become more useful as the field moves away from one-shot
problem solving to more long-term venues involving problem compilation and/or repeated solving in
evolving situations.

However, we can learn something about the effects of testing for replaceability using single problems
and one-shot search. This will allow us to determine how many replaceable values can be found in
comparison with inconsistent values in various kinds of problems and determine the effect on search of
removing these values.

For these tests, we used three types of problems:

1. heterogeneous random problems with ”geometric” constraint graphs in which the probability of
support was varied ';

2. random distance problems, i.e. problems with constraints of the form |X; — X ;| > k.
3. open shop scheduling problems with relatively small domains

Geometric problems [6] had 120 variables, domain size 20, and two levels of support: for 80%
of the values tightness (obverse of support) was 0.3; for 20% it was 0.7. The (Euclidean) distance
parameter was 0.17 and a target was set for 540 constraints (£ 3), giving a graph density of 0.076.

I'Straightforward probabilistic arguments show that homogeneous random problems are unlikely to have replaceable values
except in domains of variables of very low degree.

59

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Three hundred problems were generated of which 169 had solutions; results for this subset are reported
here. Distance problems had 50 variables, domain size 10, constraint graph density 0.10, and fixed
k = 3. Scheduling problems were based on the os-taillard-4-100 series, where constraints are of the
form X; + k1 < X;\/ X; + k2 < X;. Domains were reduced to one quarter of their original size, i.e.
from about 160 to 40.

In these experiments search was done with MAC using the domain/forward degree variable ordering
heuristic. This weaker-than-SOA heuristic was used in order to demonstrate problem simplification
more clearly with smaller problems.

In some tests we also included neighbourhood inverse consistency (NIC) preprocessing [4]. Here,
an important question is whether CNR is able to delete values above and beyond those removed by NIC.
Of particular interest was the possibility that NIC-preprocessing would result in more values that are
fully replaceable. CNRQ was used since it proved to be more efficient than CNR-1.

For random geometric problems, when values that are fully replaceable are discarded before search,
this can have a significant effect on subsequent search effort (Table 1). In some cases, the effect exceeds
that of preprocessing with arc consistency. In addition, although NIC was also quite effective, when
CNR was combined with NIC, even more values were removed during preprocessing.

Table 1. Search Efficiency and Values Removed
for Geometric and Distance Problems

geometric distance
rem nodes time rem nodes time
AC 38 55,896 408 0 154 .1
NSAC 189 30,602 154 101 189 2
CNR 269 30,277 214 351 54 19
NIC 310 10,211 97 101 189 .5
NIC+CNR 383 8,788 122 351 54 18

Means per problem: search nodes, total time (sec), values
removed during preprocessing (rem).

For distance problems, CNR also simplified problems effectively, as indicated by the number of
search nodes, although because these problems were easy, the overall processing time was greater. For
scheduling problems, due to time constraints, only the basic AC-based algorithms were run together
with CNR. In this case, AC removed 29 values per problem, and mean search nodes was 256. NSAC
removed 208 values, and mean search nodes was 156. CNR removed 348 values, and mean search
nodes was 92. However, because of the larger domains runtime was 30,000 sec as opposed to 0.4
and 1.8 for the other two algorithms. These tests show, however, that such problems are amenable to
simplification by removing replaceable values. They also show that unless stronger forms of inference
can be brought to bear, even local forms of replaceability will remain impractical. This was also found
with the distance problems, where increasing domain size to 15 or 20 made it impossible for CNR to
finish in a reasonable time. Hence, it is important to determine whether there are conditions where we
can in fact infer replaceability or non-replaceability.

7 Inferring Replaceability
In fact, many kinds of intensional constraints do afford some basis for inferring whether or not a given

value is replaceable. For example, if there is a binary equality constraint in the problem, say between
X; and X, then any value a of variable X; that satisfies this constraint will be associated with a unique

60

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

value b in the domain of X;, and any other value in the domain of X; will not support b. Hence, no other
value can replace it. A similar argument can be made in cases where the difference between two values
must satisfy an equality constraint, as with radio link frequency assignment problems (RLFAPs). For
example, if |a — b| = k satisfies a difference constraint between X; and X;, then depending on whether
a is greater or smaller than b, only b — k or b + k£ may be substituted for a, respectively (assuming that
all values are nonnegative).

For problems with distance constraints like the ones above, which do not involve equalities, there are
several ways to avoid checking individual values. First, depending on the minimal distance, it may be
possible to infer substitutability for values close to the extremes, since support for extreme values will
always include the support for less extreme values. Secondly, there are symmetry relations with respect
to support for values in the lower and upper halves of the range such that if a value in one half-range can
be shown to be replaceable then its complement in the other half-range is also replaceable. (For brevity
the proof of this is omitted.)

For problems based on relational operators such as >, <, #, we can also make potentially significant
inferences, as shown by the following proposition.

Proposition 9. For problems based on relational operators whose original domains are complete integer
ranges, the set of non-replaceable values in a domain is always a complete subrange.

Proof Sketch. Very briefly. For any variable X;, the < and > (or < and >) constraints establish a
subrange of viable values determined by the tightest < and > constraints. Values in this range can be
replaced by either more extreme or more central values depending on whether only one or both kinds of
constraints apply. In either case, this results in a subsubrange of adjacent values. In addition, inequality
constraints ensure that if the ranges of adjacent variables overlap, then the set of irreplaceable values
cannot be reduced to one value. O

From this we can infer a significant corollary:

Corollary. For problems of the type just described, if a value k in the domain of X is replaceable, then
either every value greater than k is replaceable or every value less than k is replaceable.

Preliminary results have been obtained with somewhat larger distance problems that do show im-
provement due to inference. These problems had 30 variables, domain size 15, graph density 0.25. All
constraints were of the form | X; — X;| > 3. A sample of the 50 hardest problems was culled from a set
of 500.

In addition to using inferences, in this case it was also possible to organize the queue so that values
were removed more quickly. To this end, a heuristic was used that ordered the initial queue by ascending
degree minus width (i.e. minus the constraints with variables already queued). This allowed shorter
neighbourhood searches to be done at the beginning with rapid removal of some values.

Clearly, removing replaceable values greatly simplified these problems, and with variable ordering

and inference methods the time was not excessive. In contrast, using the basic CNR algorithm on these
problems is barely feasible.

61

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

Table 2. Simplification and Search Efficiency
for Problems with Distance Constraints

rem nodes time
AC 0 2480 1.2
NSAC 0 2480 1.3
NIC 32 1792 1.5
CNR 284° 45° 10,777
CNR-infer 319 49 8.0

Notes. Means for 50 problems. Times in sec. “rem” is
values removed.” incomplete run of 5 problems.

8 Conclusions

The goal of the present paper was to systematize and explore higher-level properties that can be used
to simplify problems. The major theme is substitutability; here we have shown that there is a hierarchy
that can be constructed around this theme. Because it is a well-behaved hierarchy, properties can be
identified with certain levels that hold for all levels below but do not hold at higher levels.

We also verified earlier claims [5, 1] that the property we call replaceability has special significance.
By locating this property within a hierarchy of substitutability properties, we have also clarified the
nature of its significance, in that it is the most general property that can support local forms of substi-
tutability than can be used to infer corresponding global properties. In this way, we have modified the
more pessimistic assessment of [1] concerning the usefulness of this property.

Our experimental results show that, (i) algorithms for replaceability can in fact find numerous values
with this property in various problem classes, (ii) this can in turn improve search efficiency in many
cases. We have also shown how algorithms for finding replaceable values can sometimes be refined by
inference techniques for problems with ordered domains.

However, we think that the real opportunities for using ‘higher-level’ properties such as replaceabil-
ity remain to be discovered. For example, in cases where effort is made to compile CSPs into more
compact forms such as MDDs, the task of establishing replaceability or other related properties may be
obviated to a degree. (In fact, it should be possible to compile properties such as replaceability, so that
instead of discarding such values, they are ‘kept on hand’ as potential substitutes.) Also, in dynamic
situations where information from previous situations can be reused, it may be possible to amortize the
cost of establishing high-level properties like replaceability, thus facilitating the process of finding new
solutions to new problems. Finally, it may be possible to find approximations to full replaceability that
are reasonably effective whilst being more efficient.

Acknowledgements. This work was supported by Science Foundation Ireland under Grant No. 05/IN/
1886 and Grant No. SFI/12/RC/2289. We thank the reviewers for their perceptive comments, which
definitely enhanced the quality of the paper.

References

[1] L. Bordeaux, M. Cadoli, and T. Mancini. A unifying framework for structural properties of CSPs: Definitions,
complexity, tractability. Journal of Artificial Intelligence Research, 32:607-629, 2008.

[2] E. C. Freuder. Eliminating interchangeable values in constraint satisfaction problems. In Nineth National
Conference on Artificial Intellgence — AAAI’91, pages 227-233, 1991.

62

Replaceability and the Substitutability Hierarchy for Constraint Satisfaction Problems E. C. Freuder and R. J. Wallace

(3]

(4]

(5]

(6]

(7]

(8]

(9]

E. C. Freuder. Dispensable instantiations in constraint satisfaction problems. In Tenth International Workshop
on Constraint Modelling and Reformulation — ModRef 2011, 2011.

E. C. Freuder and C. D. Elfe. Neighborhood inverse consistency preprocessing. In Thirteenth National Con-
ference on Artificial Intelligence — AAAAI’96. Vol. 1, pages 202-208. AAAI/MIT, 1996.

P. Jeavons, D. Cohen, and M. C. Cooper. A substitution operation for constraints. In A. Borning, editor, Prin-
ciples and Practice of Constraint Programming - PPCP’94, number 874 in LNCS, pages 161-177. Springer,
1994.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Shevron. Optimization by simulated annealing: An
experimental evaluation. part ii. graph coloring and number partitioning. Operations Research, 39:378-406,
1991.

S. Karakashian, R. Woodward, B. Y. Choueiry, S. D. Prestwich, and E. C. Freuder. A partial taxonomy of
substitutability & interchangeability. In Tenth International Workshop on Symmetry in Constraint Satisfaction
Problems - SymCon2010, 2010.

C. Likitvivatanavong and R. H. C. Yap. Eliminating redundancy in CSPs through merging and subsumption of
domain values. ACM SIGAPP Applied Computing Review, 13:20-29, 2013.

R. J. Wallace. SAC and neighbourhood SAC. Al Communications, 28:345-364, 2015.

63

	Introduction
	Generalizations of Substitutability
	A Substitutability Hierarchy
	Substitutability Properties and Local Reasoning
	Neighbourhood Replaceability Algorithms
	Some Experimental Results
	Inferring Replaceability
	Conclusions

