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Abstract
This report presents the results from the 2020 friendly competition in the ARCH work-

shop for the falsification of temporal logic specifications over Cyber-Physical Systems. We
briefly describe the competition settings, which have been inherited from the previous year,
give background on the participating teams and tools and discuss the selected benchmarks.
The benchmarks are available on the ARCH website1, as well as in the competition’s gitlab
repository2. In comparison to 2019, we have two new participating tools with novel ap-
proaches, and the results show a clear improvement over previous performances on some
benchmarks.

1 Introduction
The friendly competition of the ARCH workshop is running yearly since 2014. The goal is
to compare the state-of-the-art of tools for testing and verification of hybrid systems. The

∗The falsification category was coordinated by the first author. The remaining authors represent all partici-
pants and they are listed alphabetically.

1https://cps-vo.org/group/ARCH/FriendlyCompetition
2https://gitlab.com/goranf/ARCH-COMP
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competition is organized in several categories, with different specifications (computing reachable
regions, checking temporal properties) and varying dynamics in the system models (such as
linear/non-linear and hybrid).

In the falsification category, benchmarks typically consist of executable Matlab code or
Simulink/Stateflow models, each associated with a set of requirements in temporal logic with
time bounds, encoded in MTL [20] or STL [21]. The task is to find initial conditions and time-
varying inputs subject to given constraints that steer the system into a violation of the respective
requirement. This search is typically guided using well-established robustness metrics [13] that
give a quantitative account of how close a given input is to violating a requirement. Using
such metrics as score functions permits one to employ standard optimization techniques to find
falsifying inputs. Recent results in falsification have produced a variety of techniques, mature
tools, and practical applications, see [3, 6] for an overview. Due to the complexity and unclear
semantics of Matlab and Simulink models, many previous techniques are entirely black-box and
just observe the input/output behavior of the system via simulations, but grey-box approaches
have been developed recently [27, 1, 26] to take some knowledge on the internals of the system
into deliberation. This year’s falsification competition featured two more tools and participating
teams in comparison to the previous year [11]

The participating tools 2019 were S-TaLiRo [2], Breach [9], FalStar [28, 12], falsify [1],
ARIsTEO [23], and zlscheck (based on Zélus [4]), in different configurations (Sec 2).

The format of the competitions was essentially that of 2019. It is based on a selection
of benchmark models and requirements from the literature, for which falsifying input traces
have to be found within a given maximum of simulations. The format of the competitions was
essentially that of 2019. It is based on a selection of benchmark models and requirements from
the literature, for which falsifying input traces have to be found within a given maximum of
simulations.

The 6 benchmark were those from last year, each with individual requirements, taken from
previous competitions and from the literature (Sec 3): Automatic Transmission (AT), Fuel
Control of an Automotive Powertrain (AFC), Neural-network Controller (NN), Wind Turbine
(WT), Chasing cars (CC), Aircraft Ground Collision Avoidance system (F16), and Steam Con-
denser with Recurrent Neural Network Controller (SC). There were two different general settings
for the parameterization of the search space, as described below. As part of the preparation for
zlscheck, there are now variants of the model written in Zélus (see Sec 2).

The results (Sec 4) have been extended to include those of ARIsTEO and zlscheck, whereas
the results for the remaining tools are those of 2019. As expected, the results show that tools
perform better on some benchmarks and worse on others, and that different tools have different
strengths. A characteristic shared with falsify is that the new contenders can find falsifying
inputs “online” on a single trace.

2 Participants

S-TaLiRo. S-TaLiRo [2] is a Matlab toolbox for monitoring and test case generation against
system specifications presented in STL. The test cases are automatically generated using opti-
mization techniques guided by formal requirements in STL in order to find falsifying systems
behaviors. The tool has different optimization algorithms. Specifically, in this competition,
the stochastic optimization with adaptive restarts (SOAR) [22] framework is used for all the
benchmarks except for choosing instance 1 type inputs in Steam Condenser model. In that
benchmark Simulated annealing global search was combined by a local optimal control based
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search [27]. S-TaLiRo is publicly available on-line under General Public License (GPL) 3.

Breach. Breach [9] is a Matlab toolbox for test case generation, formal specification mon-
itoring and optimization-based falsification and mining of requirements for hybrid dynamical
systems. A particular emphasis is put on modularity and flexibility of inputs generation, re-
quirement evaluation and optimization strategy. For this work, the approach has been to ensure
that each benchmark was properly implemented and a default, relatively basic falsification strat-
egy has been applied. The idea was to perform a first systematic investigation of the proposed
problems, and then to provide a base to work on for future editions of the competition to test a
larger variety on approaches on the most challenging instances. Breach is available under BSD
license4.

FalStar. FalStar is an experimental prototype of a falsification tool that explores the
idea to construct falsifying inputs incrementally in time, thereby exploiting potential time-
causal dependencies in the problem. It implements several algorithms, of which two were used
in the competition: A two layered framework combining Monte-Carlo tree search (MCTS) with
stochastic optimization [28], and a probabilistic algorithm [12] that adapts to the difficulty of
the problem dubbed adaptive Las-Vegas tree search (aLVTS). The code is publicly available
under the BSD license.5

falsify. falsify is an experimental program which solves falsification problems of safety prop-
erties by reinforcement learning [1]. falsify uses a grey-box method, that is, it learns system
behavior by observing system outputs during simulation. falsify is currently implemented by a
deep reinforcement learning algorithm Asynchronous Advantage Actor-Critic (A3C) [24].

ARIsTEO. ARIsTEO [23] is a Matlab toolbox for test case generation against system speci-
fications presented in STL and it is developed on the top of S-TaLiRo. ARIsTEO is designed to
targeting a large and practically-important category of CPS models, known as compute-intensive
CPS (CI-CPS) models, where a single simulation of the model may take hours to complete.
ARIsTEO embeds black-box testing into an iterative approximation-refinement loop. At the
start, some sampled inputs and outputs of the model under test are used to generate a surrogate
model that is faster to execute and can be subjected to black-box testing. Any failure-revealing
test identified for the surrogate model is checked on the original model. If spurious, the test
results are used to refine the surrogate model to be tested again. Otherwise, the test reveals a
valid failure. ARIsTEO is publicly available under General Public License (GPL).6

zlscheck. zlscheck is a tool for test case generation of programs written in Zélus7 [4], a
language reminiscent of the synchronous languages Lustre [14] and Scade [5] extended in order
to express ODEs. For now zlscheck applies to the discrete-time subset of Zélus.
Properties are expressed as synchronous observers [15] with a quantitative semantics to solve
the falsification problem as an optimization problem. zlscheck uses automatic differentiation
to compute gradients of the robustness of a model w.r.t. some input parameters and uses

3https://sites.google.com/a/asu.edu/s-taliro
4https://github.com/decyphir/breach
5https://github.com/ERATOMMSD/falstar
6https://github.com/SNTSVV/ARIsTEO
7http://zelus.di.ens.fr/
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gradient-based techniques to find a falsifying input. Additionally, it uses FADBADml8, a tool
for automatic differentiation which we ported from C++ to OCaml.
All the models of this competition have been rewritten manually in Zélus and are available
along with the tool on github9. The Simulink’s Integrator block is programmed in Zélus as a
fixed-step forward euler scheme.
The counter-examples found by zlscheck were systematically validated on their corresponding
Simulink models, the ones that did not pass validation were discarded from the final results.

3 Benchmark Definitions
Input Parameterization Arbitrary piece-wise continuous input signals (Instance 1). This
option leaves the input specification up to the participants. The search space is, in principle,
the entire set of piece-wise continuous input signals (i.e., which permit discontinuities), where
the values for each individual dimensions are from a given range. Additional constraints that
were suggested are finite-number of discontinuity and finite variability for all continuous parts
of inputs. Further, each benchmark may impose further constraints. Participants may instruct
their tools to search a subset of the entire search space, notably to achieve finite parametrization,
and then to apply an interpolation scheme to synthesize the input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing external knowledge about poten-
tial solutions. Moreover, more general parametrizations that are shared across requirements
and benchmark models were preferable. Due to the diversity of benchmarks, it was decided to
evaluate the proposed solutions using common sense.

Constrained input signals (Instance 2). This option precisely fixes the format of the in-
put signal, potentially allowing discontinuities. An example input signal would be piecewise
constant with k equally spaced control points, with ranges for each dimension of the input, dis-
abling interpolation at Simulink input ports so that tools don’t need to up-sample their inputs.
The arguments in favor of that are increased comparability of results. As possible downside
was mentioned that optimization-based tools (S-TaLiRo and Breach) are just compared with
respect to their optimization algorithm. Nevertheless such a comparison is still meaningful, in
particular, as as FalStar and falsify implement other approaches to falsification.

A brief description of the benchmark models follows, the requirements are shown in Table 1.

Automatic Transmission (AT). This model of an automatic transmission encompasses a
controller that selects a gear 1 to 4 depending on two inputs (throttle, brake) and the current
engine load, rotations per minute ω, and car speed v. It is a standard falsification benchmark
derived from a model by Mathworks and has been proposed for falsification in [17].

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active at the same
time). Constrained input signals (instance 2) permit discontinuities at most every 5 time units.
Requirements are specific versions of those in [17] where the parameters have been chose to be
somewhat difficult.

8https://fadbadml-dev.github.io/FADBADml/
9https://github.com/ismailbennani/zlscheck
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Table 1: Requirement formulas for the benchmarks
Benchmark STL formula Input Constraint

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1)→ ◦ 2[0,2.5]g1)
AT52 2[0,30]((¬g2 ∧ ◦ g2)→ ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3)→ ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4)→ ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000)→ (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000)→ (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000)→ (2[0,20]v < 65)

where ◦ φ ≡ 3[0.001,0.1] φ

AFC27 2[11,50]((rise ∨ fall)→ (2[1,5]|µ| < β)) 0 ≤ θ < 61.2
AFC29 2[11,50]|µ| < γ 0 ≤ θ < 61.2
AFC33 2[11,50]|µ| < γ 61.2 ≤ θ ≥ 81.2

where β = 0.008, γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))
fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

NN 2[1,37]

(
|Pos−Ref | > α+ β|Ref | → 3[0,2]2[0,1]¬(α+ β|Ref | ≤ |Pos−Ref |)

)
where α = 0.005 and β = 0.03

WT1 2[30,630]θ ≤ 14.2
WT2 2[30,630]21000 ≤Mg,d ≤ 47500
WT3 2[30,630]Ω ≤ 14.3
WT4 2[30,630]3[0,5]|θ − θd| ≤ 1.6

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,20]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9)→ (2[5,20]y5 − y4 ≥ 9))

F16 2[0,15]altitude > 0

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

Fuel Control of an Automotive Powertrain (AFC). The model is described in [19] and
has been used in two previous instalments of this competition [7, 8]. The specific limits used in
the requirements are chosen such that falsification is possible but reasonably hard.

The constrained input signal (instance 2) fixes the throttle θ to be piecewise constant with 10
uniform segments over a time horizon of 0 with two modes (normal and power corresponding to
feedback and feedforward control), and the engine speed ω to be constant with 900 ≤ ω < 1100
to capture the input profile outlined in [19] and to match the previous competitions. For
this reason, we do not consider the unconstrained (instance 1) input specification. Faults are
disabled (e.g. by setting fault_time > 50).
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Neural-network Controller (NN). This benchmark is based on MathWork’s neural net-
work controller for a system that levitates a magnet above an electromagnet at a reference
position.10 It has been used previously as a falsification demonstration in the distribution of
Breach. The model has one input, a reference value Ref for the position, where 1 ≤ Ref and
Ref ≤ 3. It outputs the current position of the levitating magnet Pos. The input specification
for instance 1 requires discontinuities to be at least 3 time units apart, whereas instance 2
specifies an input signal with exactly three constant segments. The time horizon for the prob-
lem is 40. The requirement ensures that after changes to the reference, the actual position
eventually stabilizes around that value with small error.

Wind Turbine (WT). The model is a simplified wind turbine model proposed in [25]. The
input of the system is wind speed v and the outputs are blade pitch angle θ, generator torque
Mg,d, rotor speed Ω and demanded blade pitch angle θd. The wind speed is constrained by
8.0 ≤ v ≤ 16.0. Instance 1 allows any piece-wise continuous inputs, while instance 2 constrains
inputs to piece-wise constant signals whose control points which are evenly spaced each 5
seconds. The model is relatively large. Further, the time horizon is long (630) compared to
other benchmarks.

Chasing cars (CC). The model is derived from Hu et al. [18] which presents a simple model
of an automatic chasing car. Chasing cars (CC) model consists of five cars, in which the first
car is driven by inputs (throttle and brake), and other four are driven by Hu et al.’s algorithm.
The output of the system is the location of five cars y1, y2, y3, y4, y5. The properties to be
falsified are constructed artificially, to investigate the impact of complexity of the formulas to
falsification. The input specifications for instance 1 allows any piecewise continuous signals
while the input specification for instance 2 constraints inputs to piecewise constant signals with
control points for each 5 seconds, i.e., 20 segments.

Aircraft Ground Collision Avoidance System (F16). The model has been derived from
the one presented in [16]. The F16 aircraft and its inner-loop controller for Ground Collision
avoidance have been modeled using 16 continuous variables with piece-wise nonlinear differential
equations. Autonomous maneuvers are performed in an outer-loop controller that uses a finite-
state machine with guards involving the continuous variables. The system is required to always
avoid hitting the ground during its maneuver starting from all the initial conditions for roll,
pitch, and yaw in the range [0.2π, 0.2833π]× [−0.4π,−0.35π]× [−0.375π,−0.125π].11 Since the
benchmark has no time-varying input, there is no distinction between instance 1 and instance 2.
The requirement is checked for a time horizon equal to 15.

Steam condenser with Recurrent Neural Network Controller (SC). The model is
presented in [27]. It is a dynamic model of an steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in feedback. The time
horizon for the problem is 35 seconds. The input to the system can vary in the range [3.99, 4.01].
For instance 2, the input signal should be piecewise constant with 20 evenly spaced segments.

10https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
11Last year’s report erroneously specifies: [0.2π, 0.2833π] × [−0.5π,−0.54π] × [0.25π, 0.375π], however, the

results were in fact obtained with the correct range.
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4 Evaluation

Falsification tools were instructed to run each individual requirement 50 times, to account for
the stochastic nature of most algorithms. We report the falsification rate, i.e., the number of
trials where a falsifying input was found, as well as the median and mean of the number of
simulations required to find such input (not including the unsuccessful runs in the aggregate).
The cut-off for the number of simulations per trial was 300.

The results for unconstrained piecewise-continuous input signals (instance 1) are shown in
Table 2. For a better comparison of the performance of the tools, a common ground is piecewise
constant input signals (instance 2) with a concrete specification of the number of discontinuities
allowed. The corresponding results are shown in Table 3.

They depend on the choices for the search space, which we briefly discuss for each partici-
pating tool:

Breach. For most benchmarks (exceptions detailed below), a piecewise constant signal gen-
eration was used with fixed step size. For all instances, the optimization strategy used is the
default global Nelder Mead (GNM) approach with a custom configuration for the competition,
resulting in the following three phases behavior:

• Phase 1.: at most ncorners = 64 corner samples are tested, i.e., inputs for which control
points take only extreme values;

• Phase 2.: nquasi-rand = 100 − ncorners quasi-random samples from the Halton sequence
with varying start points determined by a random seed are tested;

• Phase 3.: the robustness results from phase 1 and 2 are sorted and Nelder Mead opti-
mization is run from the most promising samples.

Note that as a result of this approach, whenever a falsifying input is consistently found with
less than 100 simulations, it indicates that the problem is likely trivially falsifiable with extreme
inputs or a quick stochastic exploration of the search space. The following settings were chosen
for input generation for each benchmark:

• AT: throttle input and brake inputs were configured with respectively 3 and 2 control
points at variable times;

• NN: input was piecewise constant with 3 control points regularly spaced;
• WT: spline interpolation with control points regurlary spaced by 5s and saturation to

domain [8;16] (same for instance 2);
• CC: same as instance 2, i.e., piecewise constant input with control points regurlary spaced

by 5s;
• SC: same as instance 2, i.e., piecewise constant input with control points regurlary spaced

by 1.75s;

S-TaLiRo. In S-TaLiRo, input signals are parameterized in two ways: the number of control
points for the input signal, and the time location of those control points during simulation.
The number of control points for each input signal is given by the user forming an optimization
problem with search space dimension the same as the number of control points. An option is
provided to the user to add to the search space the timing of the control points, but this option
is not used in the competition. For this competition, the control point time locations are evenly
spaced over the duration of the simulation for all the benchmarks except for the SC problem
instance 1.

For the transmission model the [throttle, brake] control points are interpolated with the pchip
function, with [7, 3] as the number of control points in specifications 1-6 and [4, 2] for 7-9 to
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reduce the dimensionality of the search space. For the Neural model, we use 13 control points
to yield piecewise constant signals of 3.33 seconds apart. The Wind Turbine used the default
model input of 126 control points interpolated linearly. For the SC model, Simulated Annealing
(SA) global search was utilized in combination with an optimal control based local search on
the infinite dimensional input space. The SA global search utilizes piecewise constant inputs
with 12 possibly uneven time durations.

FalStar (MCTS). The search space included piecewise constant inputs. For all the bench-
marks and for all the specifications, the number of control points was computed according to
the simulation time that was divided by a fixed interval of 5 time units (e.g., a simulation time
of 50 has 10 control points).

FalStar (aLVTS). The search space included piecewise constant inputs (the only param-
eterization currently supported), ranging from 2 upto 4 control points at which discontinuities
are allowed (resp. upto 3 for NN). In this configuration FalStar benefits from a low number
of control points and is more likely to try inputs with fewer control points first. For the AT
benchmarks it was clear beforehand that this choice suffices to falsify all benchmarks, and the
setting was then kept for the remaining experiments.

falsify. The input specification uses piecewise constant function with discontinuities spaced
in even intervals ∆T . ∆T = 1 for all models except for SC in which ∆T = 0.1 is used. The
choice for the SC model was ∆T = 0.1 model because Instance 2 uses ∆T = 1.75, which is near
to ∆T = 1.

ARIsTEO. ARIsTEO provides the same interface and parameters as S-TaLiRo, while pro-
viding additional configuration options. We had used an arx model (arx-2) with order na = 2,
nb = 2, and nk = 212 as structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs the dimension of the matrix
na, nb and nk is changed depending on the number of inputs and outputs. We used the de-
fault configuration of S-TaLiRo for searching failure-revealing revealing tests on the surrogate
model. We considered the same parametrization of S-TaLiRo for the input signals. The origi-
nal Simulink model was executed once to learn the initial surrogate model. The cut-off values
for the number of simulations of the original model and for the number of simulations of the
surrogate model (per trial) were set to 300. The results of ARIsTEO can further improve by
(i) using configurations for the surrogate model that provide more accurate approximations of
the original models and more effectively guide the search toward faulty inputs; and (ii) using
the SOAR option of S-TaLiRo that significantly improved the results of S-TaLiRo compared
with the last edition of this competition.

Properties AT51, AT52, AT53 and AT54 are currently not supported. To verify these
properties with S-TaLiRo it is necessary to embed the model into a Matlab function. Then,
S-TaLiRo performs simulation by iteratively executing the Matlab function rather than directly
simulating the model. This feature is currently not supported by ARIsTEO. We are working
on removing this limitation.

zlscheck. The inputs of the systems are bounded piecewise constant streams. A bounded
piecewise constant stream x of size N and period k is such that ∀n ∈ [0, N ], x(n) = x(bnk c · k).

12https://nl.mathworks.com/help/ident/ref/arx.html
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It is totally defined by (bNk c+ 1) values (parameters).
Two different strategies were used in these benchmarks:

• classic: the optimization is done offline: the parameters are generated at the beginning
of the simulation, then the corresponding robustness is computed. The optimization
algorithm then uses the robustness and its gradient w.r.t. the parameters to compute the
next parameters.
This strategy has been used for properties AT1, AT2, AT6, AFC29, AFC33, NN, WT,
F16 and SC.

• mode switch: the optimization is performed online: for each input, the parameter number
bnk c is generated at step bnk c · k of the simulation.
In order to achieve coverage of the different modes of the system (a mode is a state in a
hierarchical automaton), zlscheck chooses randomly an available transition and drives the
system towards triggering it: it computes a quantitative interpretation of the complement
of its guard (transition robustness) and the gradients of that robustness w.r.t. the current
values of the inputs of the system (at step n this would be the parameters number bnk c).
The value of the next parameter is then computed by the optimization algorithm using
its precedent value and the gradient.
Once the transition has been triggered, the tool chooses a new one randomly and so on,
until the simulation ends. In this mode, the input are generated independently of the
property being falsified.
This strategy has been used for properties AT5, AFC27 and CC.

The gradient-based algorithm used by zlscheck is a simple gradient descent with decreasing
step-size: at step l of the optimization, the step-size is a(l) = a(0)/

√
l where a(0) is a meta-

parameter. The first input is sampled uniformly in the input space, and if the same input is
generated twice in a row, the algorithm restarts. Other gradient descent algorithms (ADAM,
ADAGRAD, AMSGRAD) are implemented in zlscheck and have been tested but did not give
significantly better results.
Additionally, given that the integration scheme is fixed-step, we can express the period k of
the inputs as times instead of number of simulation steps. For instance 1, those periods are
(in seconds): ∆TAT = 0.5 except ∆TAT2 = 2.5, ∆TAT6a = 5, ∆TAT6b = 10, ∆TAT6c = 15 and
∆TAFC = 5 and ∆TNN = 3 and ∆TWT = 5 and ∆TCC = 5 and ∆TF16 = +∞, ∆TSC = 0.2.

Discussion. Several tools manage to consistently falsify using just a few simulations only (fal-
sify, ARIsTEO, zlscheck), in particular on benchmarks which are difficult for other approaches
(NN, CC4). This is remarkable as all sampling and tuning of the input is done on the fly with
respect to an established prefix. The results from the first few columns are discussed in more
depth in [11].

5 Conclusion and Outlook
The benchmarks established in this competition provide a reasonable basis for comparison of
methods, which are starting to be used not only here but also in related work [10].13 This is
an encouraging trend. However, clearly more difficult benchmarks are needed, possibly with
classification according to their respective difficulties.

13https://github.com/decyphir/ARCH20_ATwSS
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Table 2: Results for piecewise continuous input signals (instance 1). FR: falsification rate
wrt. number of 50 trials, S and S̃: mean resp. median (rounded down) number of simulations
over successful trials (“–” if FR is zero).
Tool: S-TaLiRo Breach FalStar FalStar falsify ARIsTEO zlscheck

Configuration: SOAR GNM MCTS aLVTS A3C arx-2 GD

Benchmark FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 50 118.8 116 50 11.0 11 0 – – 50 33.0 30 17 224.5 223 0 - - 50 3.4 2
AT2 50 23.9 19 50 2.0 2 50 21.7 5 50 4.3 3 50 22.1 10 50 4.4 4 50 15.5 2
AT51 50 26.7 22 41 74.6 67 50 39.1 43 50 69.5 56 50 1.0 1 (no support) 50 3.5 5
AT52 50 4.1 3 49 72.0 67 50 2.7 2 26 125.4 137 50 1.0 1 (no support) 50 1.6 1
AT53 50 3.4 3 49 74.5 73 50 2.5 3 50 70.8 68 50 1.0 1 (no support) 50 1.3 1
AT54 50 10.5 2 21 84.9 85 50 26.6 10 50 71.1 52 50 1.0 1 (no support) 50 3.5 2
AT6a 49 78.4 40 50 97.9 97 49 93.7 80 50 76.1 70 (not safety) 45 90.7 69 50 48.3 29
AT6b 33 132.6 128 49 112.9 118 29 166.9 173 50 82.4 75 (not safety) 50 18.1 15 35 77.7 102
AT6c 47 61.3 38 50 94.1 89 6 105.9 125 0 – – (not safety) 44 95.6 66 32 18.9 23

NN 50 26.7 22 48 96.3 101 50 48.0 40 36 122.8 106 50 1.0 1 50 62.8 46 50 1.0 1
NN(β = 0.04) 4 193.0 222 50 1.1 1

WT1 50 91.0 91 50 3.0 3 50 4.0 4 (no support) 37 47.7 7 50 15.6 10 50 1.4 1
WT2 50 32.6 30 50 3.0 3 50 1.0 1 46 8.0 2 50 1.5 1 48 1.0 1
WT3 50 44.1 60 50 3.0 3 50 2.0 2 50 2.5 1 50 3.4 3 50 1.1 1
WT4 50 3.3 2 50 30.0 30 50 2.0 2 50 4.9 4 50 1.0 1 0 - -

CC1 50 9.5 7 50 3.0 3 50 15.0 15 50 4.1 2 47 51.3 17 50 16.1 11 50 8.8 12
CC2 50 6.0 4 50 1.0 1 50 26.0 26 50 4.0 2 37 24.2 4 50 1.0 1 50 4.7 3
CC3 50 19.9 5 50 3.0 3 50 14.4 17 50 6.9 5 46 35.4 8 50 45.8 27 50 23.4 16
CC4 20 188.0 179 0 – – 0 – – 2 52.0 60 1 26.0 26 50 1.0 1 32 124.6 164
CC5 50 42.9 36 49 26.1 19 50 132.0 140 46 91.2 79 31 29.7 26 49 52.5 40 50 2.0 3

F16 7 127.6 94 1 297.0 297 (no support) 0† – – (no support) (no support) 0 - -

SC 50 ? 62.2 55 0 – – 0 – – 0 – – 0 – – 50 1.0 1 50 2.1 2

F16 †: FalStar/aLVTS currently samples initial conditions uniformly at random
SC ?: The S-TaLiRo results for this benchmark are yielded by Simulated annealing assisted with
gradient based search (See [27]).

Finally, the community should aim at reproducing the experiments and at validating whether
the generated input signals are indeed falsifying traces, which needs further work. Here, the
translation of the benchmarks to Zélus is highly useful, to have an independent and open source
alternative to using Matlab/Simulink as an execution engine.
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Table 3: Results for constrained input signals/instance 2. FR: falsification rate (of 50), S: mean
number of simulations, S̃: median (rounded down) number of simulations.
Tool: S-TaLiRo Breach FalStar FalStar falsify ARIsTEO zlscheck

Configuration: SOAR GNM MCTS aLVTS A3C arx-2 GD

Benchmark FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 50 170.3 171 0 – – 0 – – 50 33.0 30 39 125.8 110 0 - - 50 2.3 2
AT2 50 16.8 9 50 2.0 2 50 21.7 5 50 4.3 3 48 19.0 7 50 4.5 3 50 9.2 2
AT51 50 12.6 11 50 7.0 7 50 39.1 43 50 69.5 56 50 1.0 1 (no support) 50 8.7 12
AT52 49 17.6 4 50 3.0 3 50 2.7 2 26 125.4 137 50 1.0 1 (no support) 50 35.1 31
AT53 50 3.4 3 50 3.0 3 50 2.5 3 50 70.8 68 50 1.0 1 (no support) 50 22.7 26
AT54 50 24.2 16 50 3.0 3 50 26.6 10 50 71.1 52 50 1.0 1 (no support) 47 56.3 43
AT6a 44 130.4 149 0 – – 49 93.7 80 50 76.1 70 (not safety) 41 116.3 72 50 42.7 26
AT6b 39 207.2 236 0 – – 29 166.9 173 50 82.4 75 (not safety) 50 36.3 27 5 129.5 102
AT6c 42 197.5 208 0 – – 36 105.9 125 0 – – (not safety) 44 89.8 73 2 261.7 288

AFC27 50 70.3 78 50 3.0 3 – – – 50 3.9 3 50 1.6 1 50 2.3 1 50 1.0 1
AFC29 50 13.0 10 50 3.0 3 – – – 50 1.2 1 50 1.0 1 50 28.5 23 0 - -
AFC33 0 – – 0 – – – – – 0 – – 50 1.0 1 50 24.7 16 24 2.1 2

NN 49 68.0 48 50 6.0 6 50 177.4 183 26 177.0 197 50 1.0 1 50 62.8 46 50 1.3 1
NN(β=0.04) 3 127.0 74 50 1.4 1

WT1 50 7.1 5 50 3.0 3 50 4.0 4 (no support) 49 8.6 2 50 1.4 1 50 1.4 1
WT2 50 1.0 1 50 3.0 3 50 1.0 1 50 2.8 2 50 1.0 1 48 1.0 1
WT3 50 1.0 1 50 3.0 3 50 2.0 2 50 2.0 1 50 1.1 1 50 1.1 1
WT4 50 12.0 9 50 30.0 30 50 2.0 2 50 3.7 3 50 1.0 1 0 - -

CC1 50 67.8 91 50 5.0 5 50 15.0 15 50 7.3 6 50 23.5 7 50 28.8 22 50 8.8 12.5
CC2 48 114.5 105 50 1.0 1 50 26.0 26 50 15.9 9 46 14.4 4 50 1.0 1 50 4.7 3
CC3 50 22.4 13 50 5.0 5 50 14.4 17 4 207.5 229 44 13.5 2 50 18.1 16 50 23.4 16
CC4 0 – – 0 – – 0 – – 0 – – 9 120.4 168 50 1.0 1 32 124.6 164
CC5 50 74.9 48 16 84.7 79 50 132.0 140 39 117.9 103 32 37.2 8 48 66.9 44 50 2.0 3

SC 0 – – 0 – – 0 – – 0 – – 0 – – 50 1 1 0 - -
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