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Abstract

C-arm imaging plays a crucial role in intraoperative surgical guidance, with many
methods requiring precise information about the C-arm calibration parameters, achieved
through calibration phantoms with known geometries. We propose leveraging a stochastic
optimization approach to design calibration phantoms, ensuring accuracy in the presence of
noise. Our method integrates performance and usability criteria within the optimization,
enabling the design of specialized calibration phantoms.

1 Introduction

C-arm fluoroscopy is commonly used in Computer-Assisted Surgery for real-time imaging of the
patient anatomy. Once these images are calibrated, techniques such as 2D /3D registration [6, 7]
or recent reconstruction algorithms such as [4, 5] can be used for intraoperative guidance.
Accurate calibration is critical for such methods, underscoring the importance of phantom
design. Prior work [3, 2] demonstrated improved performance using phantoms with spheres,
lines, and ellipses as compared to sphere-only designs. Nonetheless, more recent applications
continue to exclusively utilize spheres as fiducial markers for practical reasons. To balance
ease of use and performance, we focus on sphere-based phantoms and propose a stochastic
optimization method to determine their placement. Our approach considers the following key
criteria:

e Insensitivity to 2D localization (i.e. segmentation) errors
e Visibility of spheres in the clinically relevant viewing directions
e Adherence to phantom size constraints

We achieve these objectives using a tunable cost function, based on a mathematical representa-
tion of the intraoperative C-arm calibration process. By aligning phantom size and views with
the intended procedure, our method ensures use case-specific optimization.
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Figure 1: Rendering depicting how the spheres (orange) of a phantom would be projected onto
the X-ray image plane (black) within the AP and Lateral views.

2 Calibration Phantom Optimization

2.1 Setup

We modeled the C-arm as a pinhole camera to mathematically represent the calibration pro-
cess. The calibration phantom composed of n¢ fiducial spheres can be placed near the anatomy
of interest, as shown in Figure 1. For any relevant views (e.g. AP or Lateral), the 3D sphere
coordinates were projected onto the simulated C-arm image plane. Using the Direct Linear
Transform (DLT) algorithm, the C-arm can be calibrated given these 2D-3D point correspon-
dences. To simulate realistic conditions, normally distributed noise was added to the 2D image
coordinates, mimicking segmentation errors that lead to calibration inaccuracies.

2.2 Cost Function

Assuming a bounding constraint on the sphere placement during optimization, we tackled the
remaining two criteria by optimizing the following cost function:

Ny
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As noise insensitivity and bead visibility can be conflicting, the cost comprises of a tunable
weighted sum, averaged over all relevant views n,. It includes three components:

® Lgcq: reduces calibration error for noisy 2D coordinates.
e [,..;: penalizes occluding spheres in the image plane.

e [,;s: ensures all spheres remain in the field of view.
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Segmentation Error Cost

We define the segmentation error cost L., as a weighted sum of errors, calculated by compar-
ing noise-affected calibration parameters to ground truth values. Intrinsic (focal length, focal
point, skew) and extrinsic (rotation, translation) errors were averaged across ns samples, with
Gaussian noise applied to the projected sphere coordinates for each sample.

1 & . . ) . )
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Occlusion Cost

The occlusion cost Ly.; was introduced a soft constraint, linear when the distance between two
spheres d;; was below a threshold t,¢;:
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et otherwise.
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Visibility Cost

Similarly, the visibility cost L,;s quadratically penalized spheres projected outside of the image

boundaries wo;:
Tlf .
L — 0 if U; € Ugol,
vis — Z o 9 .
i1 [lu; — wor]|*  otherwise.

2.3 Optimizer

The 3D coordinates of each fiducial sphere served as optimization parameters to minimize the
cost L. Given the high-dimensional (3ny) and non-convex nature of the cost function, we
employed a stochastic optimization approach, leveraging the SciPy [8] implementation of the
Dual Annealing algorithm derived from [10].

3 Results

Constraining 12 beads within a boundary of 7x7x3 cm, we compared the calibration accuracy
of a phantom with randomly distributed spheres to that of an optimized one derived using
the herein presented algorithm. The optimization strategically placed spheres near the bound-
aries, while avoiding occlusions. This improved the calibration performance under potential 2D
segmentation errors (Table 1) and reduced occlusions across all relevant views.

4 Discussion

The proposed method for designing C-arm calibration phantoms improves calibration accuracy
in the presence of segmentation noise, as compared to randomly placing the fiducial spheres
within the available space. Previous works, report the accuracy directly on the intended appli-
cation, such as e.g. the mean target registration error [1, 6, 9], or they do not go into detail on
the sphere placement [3], and can thus not be quantitatively compared. Our approach offers
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Table 1: Comparison of the average calibration accuracy between an optimized and a random-
ized phantom. The average is based on n, = 216 views with ny = 100 samples draw from the
normally distributed noise with a mean of 0.2 mm and standard deviation of 0.15 mm.

Focal Focal Skew Error Rotation Trans-
Length Point [mm] Error lation
Error [mm] | Error [mm] [degrees] | Error [mm)]
Random
o
° ® 146.57 117.05 13.63 8.48 108.30
e @ ° + + + + +
; / & 9.16 6.83 1.40 0.45 8.59
Optimized
o %0
o o, 53.90 48.48 4.19 3.51 36.58
+ + + + +
2.46 1.98 0.25 0.14 1.79

a tool to generate a view-specific phantoms satisfying clinically and technically relevant con-
straints, which could be integrated into more advanced calibration methods to further increase
calibration robustness and accuracy.
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