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Abstract

When diagnosing a faulty system one is often confronted with a large number of possible fault
hypotheses. Sequential Diagnosis (SD) techniques aim at the localization or identification of the ac-
tual fault with minimal cost or effort. SD can be viewed as an Active Learning (AL) task where the
learner, trying to find some target hypothesis, formulates sequential queries to some oracle, thereby
e.g. requesting additional system measurements. Several query selection measures (QSMs) for de-
termining the best query to ask next have been proposed for AL. To date, few of them have been
translated to and employed in SD. In this work, we account for this and analyze various QSMs wrt. to
the discrimination power of their selected queries within the diagnostic hypotheses space. As a result,
we derive superiority and equivalence relations between these QSMs and introduce improved versions
of existing QSMs to overcome identified issues. The obtained picture gives a hint about which QSMs
should preferably be used in SD to choose a query from a pool of candidates. Moreover, we deduce
properties optimal queries wrt. QSMs must satisfy. Based on these, we devise an efficient heuristic
search for optimal queries. As (preliminary) evaluation results indicate, the latter is especially bene-
ficial in applications where query generation is costly, e.g. involving logical reasoning, and hence a
pool of query candidates is not (cheaply) available.

1 Introduction

Given a system that does not behave as expected, diagnosis approaches aim at the determination of the
actual faulty system state that causes the observed misbehavior. A wide range of such approaches have
been presented for various system types such as hardware [9, 31, 27, 11, 15], software [41, 21, 16, 45],
knowledge bases [14, 19, 39, 32], discrete event systems [28], feature models [44], user interfaces
[13] or spreadsheets [1]. However, usually such diagnosis methods have to deal with a large number
of different fault hypotheses. To provide for hypotheses discrimination, Sequential Diagnosis (SD)
techniques [9, 29, 12, 39, 45] gather additional information in terms of observations or tests. The goal in
SD is the minimization of the effort or cost until complete (or at least a reasonable) diagnostic accuracy
is achieved. Unfortunately, this problem has been shown to be NP-complete [18, 27]. Thus, as a trade-
off between optimality and computational complexity, it is current practice in SD to rely on myopic
methods to guide hypotheses discrimination [9, 12, 16, 39, 35]. Empirical (e.g. [8]) and theoretical (e.g.
[27]) evaluations have shown that such heuristic methods in many cases deliver good or even (nearly)
optimal results.

Research in the field of Active Learning (AL) [37] provides a range of diverse general (families of)
heuristics targeting the optimization of hypotheses discrimination tasks. While traditionally and very
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fruitfully exploited in machine learning, e.g. for efficient text classification [43], image retrieval [42],
concept learning [6], machine translation [2], or natural language processing [26], the key idea behind
AL is that a learner can achieve greater accuracy with less newly collected information if the used
training data can be adaptively chosen based on its current state of knowledge. At each iteration of
the learning process, the active learner can consult an oracle, e.g. a human expert, to label any query
from some predefined query space. The new information in terms of the query’s label is then taken into
account to update the learner’s current knowledge state.

As this exactly captures the generic information acquisition process pursued by SD systems, many
AL strategies, termed Query Selection Measures (QSMs), are basically tailored for being used in SD.
QSMs are real-valued functions quantifying the quality of queries. However, to date only few of these
AL QSMs, e.g. information entropy [9], have been applied to SD. This is where this work begins.

Depending on the used SD framework, e.g. model-based [3 1] or matrix-based [38], queries might be
e.g. logical sentences [14, 39, 32] or requested probes [9] in the former, and pass-fail tests [27, 29, 16] in
the latter. Which instance acts as an oracle depends on the faulty system at hand, e.g. for a car diagnosis
task [17] it might be a car mechanic and for digital circuits [9] an electrical engineer that provides
the necessary measurements to answer a query, for knowledge bases [39] it might be a domain expert
answering queries about (non-)entailments of the correct knowledge base, and for software [16] an IDE
able to run required tests.

In any case, the goal of a query is to discriminate well between competing hypotheses. At this,
irrespective of the particular used QSM, a minimal requirement usually postulated is that any query
outcome must lead to the dismissal of at least some (known) hypothesis. We call such queries discrimi-
nating queries. Another plausible general requirement to queries, besides the postulation of a favorable
QSM-value, is that they should discriminate among an as large as possible number of (known) hypothe-
ses. In other words, there should ideally be no uncommitted hypotheses [9] for a query, i.e. hypotheses
that do not predict any query outcome (and hence can never be invalidated by asking the query). We
call such a query a strong query. Intuitively, the more uncommitted hypotheses there are for a query, the
lower its discrimination power and the less favorable it tends to be.

In fact, there might be uncommitted hypotheses for queries in SD. For example, in model-based
diagnosis [31, 9] they might occur due to incomplete system knowledge or too few observations; in
spectrum-based diagnosis [16, 38], they can arise in the presence of intermittent failure behavior [16]
of system components, which might not enable to assess for sure whether a test must pass or fail given
a particular hypothesized faulty state of the system. As usually the hypotheses types, e.g. decision trees
or neural networks, considered in classical machine learning entail a label for each query from the pre-
defined query space, AL QSMs by default do not deal with uncommitted hypotheses. Therefore, when
used for SD, they might propose queries with suboptimal discrimination power despite the presence of
better queries. We provide a thorough analysis of this issue enabling the recommendation of more and
less suitable QSMs to be adopted for SD.

AL distinguishes among various learning scenarios. Two of them, pool-based sampling and query
synthesis [37], are relevant for SD. The former assumes that a (large) pool of unlabeled queries is
(cheaply) available and that the best query wrt. a QSM is determined by comparing the QSM-value of
all queries in the pool. In the latter, in contrast, an algorithm tries to generate an unlabeled query with
sufficiently good QSM-value. To the best of our knowledge, current SD methods merely adopt the pool-
based paradigm. Whereas this seems appropriate in e.g. spectrum-based SD approaches [38, 16] where
the possible tests (i.e. unlabeled queries) are explicitly given before the SD process starts (and relatively
cheaply obtainable through e.g. test execution profiling), it might often be not optimally suited for e.g.
model-based SD approaches [31, 9, 14, 12, 39, 35], where the computation of a pool of (discriminating)
query candidates might rely on expensive logical derivations from the given model. Moreover, for all
discussed QSMs, the computation of a query’s QSM-value requires knowledge about its discrimination
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properties (see later), which is explicitly given (test matrix) for the former approaches and must be costly
derived (logical reasoning) in the latter. For these reasons, query synthesis in principle appears to be a
promising solution especially in model-based applications as it attempts to actually compute a minimal
number of queries and associated QSM-values until a (sufficiently) good one is found. The viability and
benefit of one query synthesis method to model-based SD has been recently shown in [34].

Contributions. In this paper we analyze various AL QSMs and

1. reformulate these QSMs to be appropriate for SD with binary-outcome queries,

2. define a plausible general discrimination preference order (DPO) on queries (formalizing the no-
tion of “discrimination power”),

3. formally characterize a superiority relation on QSMs based on the (degree of) their compliance
with the DPO,

4. figure out superiority relationships between QSMs which suggests a preference order on QSMs
helping to opt for the most suitable QSM, especially in pool-based scenarios,

5. derive improved (parameterized) versions from some QSMs to overcome unveiled deficits,

6. formalize the notion of equivalence between QSMs based on their preference order on queries,

7. give equivalence classes of QSMs under various conditions (query spaces, QSM parametriza-
tions),

8. analyze QSM functions regarding their global optima and determine properties of optimal input
arguments (i.e. optimal queries),

9. show how these properties can be used to design efficient heuristic search procedures for the
systematic construction of (nearly) optimal queries wrt. a QSM in a query synthesis scenario, and

10. provide (preliminary) evaluation results on the proposed general query synthesis approach using

real-world diagnosis problems demonstrating low cost, high query quality as well as significant
superiority to pool-based approaches when query computation requires logical reasoning.

2 Preliminaries

In an SD setting we consider there is a (not necessarily explicitly given) set of unlabeled queries ¢/ and
a (possibly empty) set of already labeled queries £.! A labeled (or: answered) query in L is a tuple
(@, aq) where @ is a query and ag € {0,1}. ag = 1 (ag = 0) means that the query () is answered
by true (false). Queries are answered by an oracle given by the total function ans : U — {0, 1} which
maps queries () € U to their respective answer a¢.

The goal in SD is to find the target hypothesis hy, i.e. the actual (faulty) system state, from a hypoth-
esis space ‘H which depends on the SD task. E.g., in model-based diagnosis each h € H is a diagnosis,
i.e. an assumption about the faulty/healthy-state of each (relevant) component of the system under con-
sideration. For a matrix-based diagnosis task, on the other hand, each hypothesis might be one of a
number of predefined (faulty) system states.

Given a set of labeled queries £, any hypothesis h € H is still possible if it is consistent with L.
The set including all h € H consistent with £ is called the current version space V C H [23]. As
discussed in Sec. 1, in general each h € H entails an answer for a subset of the unlabeled queries in
U. Hence, each query (Q imposes a partition on # into three sets (), He, ’H%): ’Hg includes those
h € H consistent only with ag = 1 (predicting ()’s positive answer), M, those h € H consistent

only with ag = 0 (predicting (Q’s negative answer), and HOQ those consistent with both ag = 1 and

I The general term query, borrowed from AL, is used to refer to different means of information acquisition, e.g. probes [9],
tests [27] or test cases [14], depending on the concrete SD approach.
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ag = 0 (not predicting any answer). That is, the new (still consistent) hypotheses set after ans(Q) =1
is known (i.e. (@, 1) is added to £) is H \ H,. Otherwise, if (Q,0) is added to £, the new hypotheses
setis H \ H,.

We assume that the oracle ans provides correct answers. That is, if the target hypothesis h; is in 7—[5
and H g, respectively, then ans(Q) = 1 and ans(Q) = 0. We stress that the oracle is a fotal function
and thus assumed to answer every query @ € U, even if h; € HOQ. E.g., even though h; in a circuit
diagnosis task might not entail whether a particular wire is high or low, probing the wire will provide an
answer. But, for either outcome, h; remains valid a-posteriori.

As the explicit computation of the full version space VV C H might be hard or even infeasible
[9, 39, 32], we assume that some subset V' of V is known at each query selection. In SD the set V is
often referred to as leading diagnoses [10] and usually comprises the most probable [7] or minimum-
cardinality [12] hypotheses. As with #, a query () partitions V' into Vg =Vn 7-[25, Vg =V NH,
and V§ := V N HY. We denote by Py (Q) := (VJ, Vg, V) the (unique) partition of Q (wrt. V).
Generally, multiple queries ) might have the same partition Py (Q). We call Q € U a discriminating
query (DQ) (wrt. V) iff Vg # 0 and V, # (. Else, we call Q a non-DQ. Similarly, we call Py (Q) a
discriminating partition (DP) (wrt. V) iff Q is a DQ (wrt. V). That is, either label ag € {0, 1} of a DQ
() eliminates at least one h € V or, respectively, at least two hypotheses in V' make different predictions
as to ag. Intuitively, one will try to avoid asking any @) € U which is not a DQ. Because — based on
the current evidence in terms of V' — it is not sure that any relevant new information will be gained by
obtaining ag. A query @ € U is termed weak query (wrt. V) iff Vg # (). Otherwise, we call Q strong
query (wrt. V). Analogously, we call Py (Q) a strong / weak partition (wrt. V') iff Q) is a strong / weak
query (wrt. V).

An AL query selection measure (QSM) is a function m : U — R assigning to each query QQ € U a
(quality) measure m(Q) € R. A theoretical optimum X wrt. m is a hypothetical (not necessarily real)
DQ X which globally optimizes m(X ). Depending on the QSM m, “optimizing m” can mean either
maximizing or minimizing m. An optimal query Q wrt. m and V is a DQ wrt. V with optimal m(Q)
among all DQs wrt. V. Note, theoretical optima and optimal queries need not be unique.

In line with the works [9, 5, 39, 32] we assume a probability space over H as follows: Each h € H
has an a-priori probability p(h) of being the target hypothesis hy, i.e. p(h) := p(h = h;). Given a
currently known subset V' of the version space V C H, we define p(X) := >, -\ p(h) for X C V
and assume p to be normalized over V' such that that p(V) = 1. Since the version space includes
only still possible hypotheses, p(h) > 0 must hold for all » € V. For any Q € U and oracle ans:

0 0
plans(Q) = 1) = p(VJ) + w and p(ans(Q) = 0) = p(Vy) + p(‘;@) i.e. the uncommit-
ted hypotheses h € V3 are assumed to predict each answer with a probability of % The posterior
probability p(h | ans(Q) = ag) of some h € H can be computed by the Bayesian Theorem as
p(ans(Q) = ag|h) p(h)/plans(Q) = ag) where p(ans(Q) = 1| h)is 1if h € H, 0if h € Hes
and § if h € Y.

Example: Consider Tab. 1 which gives some partitions Py (Q;) of V := {hy,..., h5} for 1 < i < 4.
All associated queries Q; (not given in Tab. 1) are DQs as ng and V. are non-empty for 1 < i < 4.
Hence, each partition in the table is a DP. Moreover, ()1, @3 are strong and ()2, 4 weak DQs due to
empty and non-empty chi’ respectively.

Assuming the probabilities p := p; over V' (see Tab. 1), we have that, e.g.,

plans(Qs) = 1) =p(V$3) =p({hs}) =0.25

plans(@2) = 0) = p(Vg,) + £p(V8,) = p({hs, ha}) + 2p({hs}) = 0.15+0.25 + 20.2 = 05
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. + — 0

v VQ'i VQ’i VQl h1 ho hs ha hs

U {hhe} {hshahs} 0 pi(h:) 035 005 015 025 02
2 {h,ha} {h3, ha} {hs} pa(h) 001 002 08 015 0.02
3 {ha} {h1,h2,hs, hs} 0 ps(h)) 04 02 005 01 025
4 {hl,hz,h5} {h4} {hS}

Table 1: Some sample partitions wrt. V' = {hq,..., hs} (leff) and probability distributions p;, p» and
ps over V (right).

Let m1(Q) := |p(V5) — p(Vg)| + p(V§) be a QSM (to be minimized). Then we have that
(m1(Q1),...,m1(Q4)) = (0.2,0.2,0.5,0.5). Supposing that Q1, ..., Q4 are all possible DQs wrt.
V', the optimal queries wrt. m, and V' are (1 and (3. A theoretical optimum X wrt. m; satisfies
p(V¥) =p(Vx) =05and p(Vg) = 0.

Let Q2 be labeled negatively, i.e. ans(Q2) = 0. Then the hypotheses h1, ho are invalidated. The
remaining ones are V' \ ng = {hs, ha, h5}. The (Bayes) updated probability distribution over V' is

p(h1) = p(ha) = 0, p(hs) = %5 = 0.3, p(hy) = %2 = 0.5 and p(hs) = 1202 — 0.2, O

The generic SD procedure to which our analyses apply is:

Generic Sequential Diagnosis Procedure:
Input: Diagnosis problem”
Output: (Set of fault hypotheses including the) target hypothesis

1. Generate a subset V' of the current version space V.

2. If a defined stop criterion (e.g. |V| = 1 or some h € V has overwhelming probability p(h))

is met or no more queries wrt. V exist, return V' and p. Else, go to (3.).

Select the best next DQ¢ () based on the information in V' and p and pose it to the oracle.

4. Given the answer ag to (), run some update procedure that takes V', (), ag and p as input
and returns a new subset V' of the updated version space V' (possibly including previously
unseen hypotheses) and an updated probability measure p. Go to (2.).

bt

“Might be of different type, e.g., model-based or spectrum-based.

bThere is nothing to do if V is explicitly given as, e.g., in some matrix-based SD approaches.

¢ Since non-DQs are not of interest in SD, as argued in Sec. | and 2, we assume that non-DQs are ignored at query
selection. This is easily accomplished by discarding (i.e. non-selecting) any query Q with empty Vg or Vé .

3 Analysis of Active Learning Strategies for Sequential Diagnosis

In this section® we motivate and specify a general discrimination-preference order (DPO) over queries
in U, study various QSMs regarding their compliance with the DPO, present derived equivalence and
superiority relations among these QSMs and specify some plausible new QSMs, e.g. as improved ver-
sions of existing ones. The results suggest which QSMs are more or less recommendable to be used in
pool-based SD scenarios (cf. Sec. 1). Moreover, we analyze the QSM functions m wrt. their (theoret-
ically) optimal inputs which lets us deduce properties of optimal strong DQs for the discussed QSM:s.
These properties provide the basis for a systematic construction of (or search for) optimal DQs in a
query synthesis SD scenario (cf. Sec. 1).

2Detailed proofs of all results are given in Sec. 3.2ff. of the extended version [33] of this paper.
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3.1 Relevant Definitions and Properties

We first point out that the partition of a query () € U (along with the probability measure p) gives
already all the relevant information taken into account by QSMs m to determine Qs quality m(Q).
Because the partition enables

1. the test whether @ is a DQ (i.e. Vg #0and V; #0),

2. the test whether (@ is strong (i.e. VQO2 =0,

3. an estimation of the impact ()’s answers have in terms of hypotheses elimination (potential
a-posteriori change of the version space), and

4. the assessment of the probability of ()’s positive and negative answers (e.g. to determine the
uncertainty of Q).

QSMs might basically focus on pretty different properties of a query’s partition when estimating its
goodness. However, independently of the concrete used QSM, queries with a higher “discrimination
power” should be preferred. Intuitively, given a query (1 € U which is objectively better than Q2 € U,
we do not want a reasonable QSM to propose (J2. We next define a general order on queries, called
DPO, thereby formalizing the notion of “discrimination power”. In the following we always assume V
to be the current version space and V' C V.

Definition 1. Let Q,Q € U. Further; for any query Q € U let Vg[—a] C V denote the hypotheses
predicting —a (i.e. inconsistent with ans(Q) = a). That is, exactly Vg[—a)] is eliminated among all
hypotheses in V' given ans(Q) = a.

Then we call () discrimination-preferred to Q (wrt. V) iff there is an injective function f : {0,1} —
{0, 1} that maps each of Q’s answers @y, @y € {0,1} (@, # G2) to one of Q’s answers a; = f(a;) such
that

1. VQ[—ML]

i) 2 V[—a,] for some i € {1,2}, and
2. VQ [—wzj]

Vgl-a;) for j € {1,2} and j # i.

We use Q <ppo Q to state that Q is discrimination-preferred to Q and call {(Q, Q) | Q <ppo Q} the
discrimination preference order (DPO).

2
)

Simply put, Q <ppo @ means: For each result one might get by asking the oracle Q, there is a
better result in terms of hypotheses elimination one can get by asking the oracle @). In particular, for
one of the answers @; of (J, some answer a; to () eliminates at least the same hypotheses. For the other
answer @;(# @;) of Q, the other answer a;(# a;) to  eliminates strictly more hypotheses.

The idea underlying the DPO is that asking @ is always (i.e. for any answer) better than asking Q
given that the target hypothesis h; is in V' and predicts an answer for both queries:

Proposition 1. Let Q <ppo @ and h; € Vg U VQ_ and h; € Vg U V@_. Then the remaining
hypotheses in V_after adding (Q,ans(Q)) to L is a subset of the remaining hypotheses in 'V after
adding (Q, ans(Q)) to L.

Proof. The proposition follows from the fact that (i) for any Q € U, ans(Q) = 1if h; € V5 and
ans(Q) = 0if hy € Vg, that (i) (hy € V) @ (hy € V) and (hy € Vi) & (hy € V5), and (iii) the
subset-relations in (1) and (2) in Def. 1. (¢6 denotes the standard xor-operator) O
Example (cont’d): In Tab. 1, Q1 <ppo @2 and Q3 <ppo Q4. E.g. the latter, by Def. 1, holds since
(1) for ans(Q3) = 0, which eliminates {h4}, there is an answer, namely ans(Q4) = 1, which also

dismisses {4}, and (2) for ans(Q3) = 1 (making {hq, ho, h3, h5} invalid) the answer ans(Q4) = 0 is
strictly worse (invalidating {h1, ha, h5}).
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Givene.g. hy € {h1, ha, hy, hs}, then the hypothesis elimination rate (wrt. V) of the discrimination-
preferred Q5 is better than the one of ()4 for any oracle ans (Prop. 1). O

Every QSM imposes a (preference) order on a given set of queries U:
Definition 2. Let m be a QSM and Q, Q" € U. Then Q is preferred to Q' by m, formally Q <,, Q', iff

(a) m(Q) < m(Q") if m is optimized by minimization,
(b) m(Q) > m(Q') if m is optimized by maximization.

Two QSMs are equivalent iff they impose exactly the same preference order on queries:

Definition 3. Let my, mo be QSMs. Then we call my equivalent to my (m; X-equivalent to my),
formally mi = mgq (M1 =x ma), iff for all queries Q,Q" € (X Q) U: Q <m, Q' iff Q <m, Q.

The next definition facilitates our analysis of the degree of compliance of QSMs with the DPO:

Definition 4. Let m be a QSM. Then:

e We say that m preserves (or: satisfies) the DPO (over X) iff, whenever Q <ppo Q' (and Q,Q’ €
X), it holds that Q <., Q'.

(Le. the preference order imposed on queries by m is a superset of the DPO.)

e We call m consistent with the DPO (over X) iff, whenever QQ <ppo Q' (and Q,Q’ € X), it does
not hold that Q' <., Q.
(Le. the preference order imposed on queries by m has no intersection with the inverse DPO.)

We call QSMs with a higher compliance with the DPO superior to others:

Definition 5. Let m1, mo be QSMs. We call mo superior to mq (or: mq inferior to msy), formally
mo < My, lﬁc

1. for some pair of queries Q, Q" where Q <ppo Q' and not Q <, Q' it holds that Q <, Q'
(i.e. in some cases mo does, but my does not satisfy the DPO), and

2. for no pair of queries Q, Q' where Q <ppo Q' and not Q <, Q' it holds that Q <., Q’
(i.e. whenever mo does not satisfy the DPO, my does not satisfy it either).

Analogously, we call mo X-superior to my (or: my X-inferior to mo), formally mo <x my, iff superi-
ority of mg to my holds over X C U.

The following proposition can be easily verified:
Proposition 2. The following holds for the introduced relations:

e <., and <ppo are strict orders, i.e. irreflexive, asymmetric and transitive relations over queries.
e = and =x are equivalence relations over QSMs.
e < and <x are strict orders over QSMs.

The next proposition summarizes some easy consequences of the provided definitions:

Proposition 3. Let m, my, ms be QSMs, Q, Q' € U, X C U and Q,,, € U denote the optimal query
wrt. m; (i € {1,2}) and V.. Then:

1. m1 = mg implies Qumy = Qm,-
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2. If my does and ms does not satisfy the DPO, then m1 < ma.
3. Q <ppo Q' implies V3, D V(S. Thus, ch, # .
4. If m satisfies the DPO (over X), then m is consistent with the DPO (over X).

5. Py (Q) of any Q' satisfying QQ <ppo Q' can be obtained from Py (Q) by transferring X with
hcXcC VC‘; U VC; to ch and by possibly interchanging the positions of the resulting sets

Va \ X and V5 \ X. That is, By (Q') = <V5,, Vors V5,> is either equal to

VI\NX, V5 \ X, VSUX or to
Q Q Q
(Vo \X, Vi \ X, ViU X)

Prop. 3 substantiates the plausibility of the DPO. In particular:

e Prop. 3.5 shows that discrimination-dispreferred queries result from adding hypotheses to those
(ch) that cannot be invalidated by any query answer.

e Prop. 3.3 implies that no weak query can be discrimination-preferred to a strong one. Nor can a
non-DQ be discrimination-preferred to a DQ.

Example (cont’d): Alternatively to directly using Def. 1 as before, Prop. 3.5 enables to prove (5 <ppo
Q4 by constructing Q4 from @5 using X := {h3}. On the other hand, e.g., the DPO does not relate ()5
with Q3 or vice versa. This can be easily verified by Prop. 3.5, i.e. no suitable X exists.

Let m1, my be QSMs and their preference orders imposed on V' be (the transitive closure of)
{Ql =<my Q35Q3 =my Q%QQ =my Q4} and {Ql =ma Q37Q2 <ma Q37Q1 =ma Q47Q2 <ma Q4}
Clearly, m; satisfies the DPO since its imposed order is a superset of the DPO {(Q1,Q2), (Q3,Q4)}
over V (cf. Def. 4). On the contrary, mq is consistent with the DPO since neither Q3 <,,, @1 nor
Q4 —<m, Q3 holds, but does not satisfy the DPO since, e.g., 1 <m, (2 does not hold. So, by
Prop. 3.2 we can conclude that m4 is X-superior to ms, i.e. m; <x ms where X := {Q1, ..., Q4}. Let
Q4 <m; Q3 for some QSM mg, then mg neither satisfies the DPO nor is consistent with the DPO.

By Prop. 3.3, no @); can be discrimination-preferred to ()1 or (3 since V& =(forie {1,3}. O

3.2 The Discussed QSMs

In the following we briefly sketch the AL QSMs we analyze regarding their use in SD (see Tab. 2),
grouped by their Query Selection Framework (QS-FW) [37]:

Uncertainty Sampling (US) Here, the principle is to select the query about whose answer the learner is
most uncertain (as per the probability measure p) given the current evidence V. Least Confidence
(LC) selects the query whose most likely answer ag max has least probability. Margin Sampling
(M) targets the query for which the probabilities between most and second most likely label ag
and aq o are most similar. Entropy (H) prefers the query whose outcome is most uncertain wrt.
information entropy. Gini Impurity (Gl) is borrowed from decision tree learning theory [3].

Information Gain (IG) The query favored by ENT maximizes the information gain [25, 30], or equiv-
alently, minimizes the expected a-posteriori entropy wrt. hypotheses in V. As proven in [9], ENT
can be equivalently written as shown in Tab. 2. ENT is probably the most popular QSM applied
in SD approaches [9, 4, 29, 16, 39].
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QS-FW QSMm m(Q) opt. DPO 3 theor. opt.
LC EAQ\B\MAQV = QQVENXV / X v
Us M p(ans(Q) = aq,1) — plans(Q) = aq,2) N\ x v
H - Mugmé 13 pan A ) = a)logy p(ans(Q) = a) / x 4
Gl = p(ans(Q) = 1)* — p(ans(Q) = 0)* /! X v
G ENT P(VE) + Xaeqo1) Plans(Q) = a)logy p(ans(Q) = a) N\ X 4
ENT.  2p(V) + Cacqor Plans(Q) = a)logy plans(Q) =a) X1V 4 v
SPL [IvE1=1vgl|+1v8) \ ) v
osc  SPL: [IVE1I-1vgI]+21v) N X/ (V) mn 1) v
_ [X| [X]
VE Muxmfl 2} vguvg | loga vaovgl 4 X v
_ [X] p(X)
KL Muxm?\m;\mv Vguvy | logs p(VEUVY) / x x
(0]
EMCa 2 [plans(Q) = 1) — [p(ans(Q) = 1)]2] — 22 Vs x v
(v§)
EMCa; 2 [p(ans(Q) = 1) — [p(ans(Q) = 1)]?] — 2 =52 / X(z<2)/V (222) 4
EMC EMCb plans(Q) = 1)V |+ plans(Q) = 0)| V| / x x
MPS 0 if @ not a strong DQ oi_a\mw_ — _SM; # 2, Vg min €lse 1y Ve ) v
MPS’ I_<m_wm©=o”wm:o:WUOoL_<m'_ - _A\mw_i #2,Vominelse p v v
BME IVQ.p.min| 2 e X v
RIO’ % +Vo,n 3 ¢ X v
RL ENT.(Q) | 1
RIO, =+ Vo,n 3 N X v

Key: 1): Vg min := mﬂmsaxm,ﬁi Vs (IXD)- 2 Vi p,min is equal to V; if (V) < p(V),to Vi if p(V) < p(V), and t0 0

else.  3): Vg ,, is equal to min{| ‘\m._q |V, o 5|} — nif min{| a\m._q | Vo |} > n, and equal to |V| else. n denotes the minimal number of hypotheses
the next query must eliminate (in the worst case) [35].  4): In general, v* holds only if z is specified as per Prop. 5.

Table 2: QSMs m (col. 2) grouped by query selection frameworks (QS-FWs) (col. 1). Functions m(Q) (col. 3) are optimized for arguments @ that
maximize (') or minimize (\) m(Q) (col. 4). v means m satisfies the DPO, (v") that m is consistent with, but does not satisfy the DPO, and
x that m is not consistent with the DPO (col. 5). Col. 6 reports whether (v") or not (x) a theoretical optimum exists for the QSM. Numbers ;, are
explained in the key below the table. Statements such as (.~ 2 state conditions under which a property holds.
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Query by Committee (QBC) QBC criteria use the competing hypotheses in V' as a committee C'. Each
predicting committee member 2 € V has a vote on the classification of a () € U, i.e. the commit-
tee (for Q)isC =V \ V(g = Vg U Vg . The query @ yielding the highest disagreement among
all committee members is considered most informative. There are different ways of estimating the
disagreement: Vote Entropy (VE) selects the query for which the entropy of the relative prediction
frequencies is maximal. At this, | X|/] Vg U Vg | with X = Vg (X = Vg) is the relative
prediction frequency of label 1 (0). The Kullback-Leibler-Divergence (KL) proposes the query
that manifests the largest average disagreement between the label distributions of any h € C' and
the consensus of the entire C' (cf. [37, p. 17] for a formal specification). By simple mathematics,
one can derive that the KL measure has the shape as given in Tab. 2 [33, Prop. 26]. Split-In-Half
(SPL) [25, 24, 39] tries to eliminate exactly half of the currently known hypotheses, i.e. suggests
queries which split V' into VJ and Vi, both of size [V|/2 (implying | V(S| = 0).

Expected Model Change (EMC) The principle is to favor the query that would impart the greatest
change to the current model if its label was known. Interpreted in the sense of version spaces
[22], we view all the available evidence V' as “model”. “Maximum expected model change”
can be interpreted in a way that the expected (a) probability mass or (b) number of invalidated
hypotheses in V' is maximized. The resulting QSMs, which we call EMCa for (a) and EMCb for
(b), are depicted in Tab. 2. Further, we propose the new QSM Most Probable Singleton (MPS). It
favors DQs with empty ch where one of Vg ; V¢ 1s asingleton and this singleton has maximum
probability. Since in this case the probability of this singleton is equal to the probability of one
answer of ) (cf. Sec. 2), it attempts to maximize the probability of deleting the maximum possible
number of hypotheses in V. The variant MPS’ of MPS additionally penalizes queries () with
Vg # (). Another new QSM we introduce is Biased Maximal Elimination (BME). The idea is to
achieve a bias (probability > 0.5) towards an answer that rules out a maximal possible number of
hypotheses in V.

Reinforcement Learning (RL) A “risk-optimization” reinforcement learning QSM (RIO) was intro-
duced in [35] to overcome performance issues of SPL and ENT in terms of querying cost given
unreasonable a-priori probabilities. Based on the hypothesis elimination rate achieved by the al-
ready asked queries, RIO adapts a learning parameter which dictates the minimum number of
hypotheses n the next chosen query must eliminate (in the worst case). Tab. 2 gives a slightly
modified version RIO’ of RIO which can be expressed in closed form (cf. [33, Rem. 8]). Among
those queries that approach n best (i.e. minimize Vg, ,,, see Tab. 2), the best query wrt. the ENT
QSM is selected.

3.3 Compliance of QSMs with the DPO

We next discuss how far the QSMs in Tab. 2 agree with the DPO in terms of Def. 4 over any set of DQs
us

Proposition 4. The QSMs LC, M, H, ENT, VE, KL, EMCa, EMCb, BME and RIQ’ are not consistent
with the DPO. Further, SPL and MPS are consistent with, but do not satisfy the DPO.

Proof. (Sketch) We give counterexamples based on Tab. 1. First, let the hypotheses probabilities p :=
p1. Then p(ans(Q1) = 1) = 0.4 and p(ans(Q2) = 1) = 0.5. Hence, Q2 <, Q1 form € {LC, M, H}.
Due to the asymmetry of <,,, for each QSM m (Prop. 2), we have =(Q1 <,, Q2). But, Q1 <ppo Q2
(see Example above). Inconsistency of m with the DPO now follows from Def. 4.

31t suffices to analyze properties as per Def. 4 of QSMs regarding the DPO just for DQs, cf. footnote c.
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Similarly, we obtain Q2 <, Q1 for m € {VE, KL} because VE(Q1) = —Zlog, 2 — 2log, 2 <
—23 log, 3 = VE(Q2) and KL(Q1) = —2log,(0.4) — 2 log,(0.6) < —23 log, 3 = KL(Q2). Further,
assuming p := p3, we analogously find that Q4 <., @3 for m € {ENT,EMCa,RIO"} (letting n := 1
for RIO"), and, supposing p := po, we realize that Q4 <,,, Q3 for m € {EMCb, BME}.

For all Q,Q’ € U where QQ <ppo Q' and m € {SPL, MPS} it can only hold that @ <, Q' or
m(Q) = m(Q") (follows from Prop. 3.5 and the QSM definitions, see Tab. 2). Thence, ~(Q’ <., Q).

So, m is consistent with the DPO by Def. 4. O

For the QSMs ENT, SPL, EMCa and MPS we can derive (parameterized) improved versions ENT ,
SPL., EMCa, and MPS’ that satisfy the DPO (see col. 2 and 3 of Tab. 2). The idea with all these QSMs
is to penalize the inclusion of hypotheses in ch. Because, the more elements there are in ch, the less
the query @ tends to be favored by the DPO. However, it is material to obey that this penalization must
be as subtle as possible in order to preserve the query selection characteristics of the respective QSM.
Because, in general, m, # m,. for some QSM m parameterized by z and r (z # r), respectively, and
the difference between QSMs m, and m,. regarding their query selection behavior grows with |z — r|.
For instance, consider ENT and two queries @, Q' with (p(Vg),p( Vg),p(V§)) = (0.01,0.99,0)
and (p( Vé“,),p( Vo) p(V)) = (0.49,0.49,0.02). Obviously, since ENT favors queries with 50-50
answer probability and low p( V), it should give Q' preference to @ although V3, # 0 and V§ = 0.
Using ENT, with an unjustified too large parameter z, say z := 50, would however imply ENT ,(Q) =
0.92 < 0.99 = ENT.(Q'), i.e. the favoritism of ), which contradicts the nature of entropy query
selection. Note, @ and @’ are not DPO-related (cf. Prop. 3.5). Thence no (change of the) parametrization
of ENT whatsoever is justified in the presence of only Q, Q’.

We now state the relationship between z-parameter and DPO adherence of the new QSMs. These
results show how to set z to an effective (wrt. DPO-compliance), but not higher than justified (wrt. QSM
nature preservation) value:

Proposition 5. For the parameterized QSMs ENT ,, EMCa, and SPL,, the following holds:

o AdENT, [33, Cor. 3+4]:
Let for all Q € U be mingc(o1yplans(Q) = a) > t > 0. Then, for any z >
max {—3(logy t —logy(1 — t)), 1}, ENT, satisfies the DPO over U. Further, ENT, < ENT,
for0 <r<s.

e Ad EMCa, [33, Cor. 13]:
Forall z > 2 and r > 0, EMCa,, satisfies the DPO and is superior to ENT,..

e AdSPL, [33, Prop. 19]:
SPL, is (inconsistent with / consistent with, but not satisfying / satisfying) the DPO for all (z < 1
/z=1/z>1).

So, whereas for EMCa, and SPL, a fixed z-value guarantees DPO-satisfaction for any I/, for ENT,
the z-parameter depends on ¢. It is straightforward from the definition of p(ans(Q) = a) (cf. Sec. 2)
that ¢ < mingey p(h) for any U. So, it is easy to compute ¢ and thence a suitable parameter z as per
Prop. 5 for any given query pool ¢/ ad-hoc in order to ensure that ENT, is DPO-preserving over /.
Finally, for MPS’ it is clear from its definition that it satisfies the DPO.

3.4 Equivalences Between QSMs

Tab. 3 summarizes equivalence classes (ECs) as per Def. 3 between QSMs over arbitrary queries (row
=) and over strong queries X (row =x). ECs wrt. = cluster QSMs that manifest the exact same query
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Equivalence Classes (ECs) of QSMs

{ENT1,ENT}, {ENT. (¢ (0,1} } , {SPL1,SPL}, {EMCb},
{SPL. -¢to.1) } - {RIO%, RIO'}, {RIO! (s}, {KL},
{EI\/ICal, EMCa} , {EMCaz (z¢{071})} s {VE7 SPL()} s
{EMCao, GI,LC, M, H,ENTo}, {MPS}, {MPS'} , {BME}

@ : {EMCa, EMCa. (.cg), Gl,LC,M,H,ENT,ENT. (.cp) } ,
x @: {SPL,SPL. (.cr), VE},®: {RIO",RIO ()},
@: {KL},®: {EMCb},® : {MPS,MPS'} ,® : {BME}

Table 3: Equivalence Classes (ECs) of QSMs wrt. the relations = and =y (cf. Def. 3). X is any set of
strong queries. Circled numbers ® provide reference to Tab. 4, which gives only one set of requirements
for each numbered EC.

selection behavior in SD. Given a setting where all hypotheses predict an answer for any query (as e.g.
in spectrum-based SD without false positive or negative test outcomes [27, 46]), it holds that all QSMs
in an EC wrt. =4 behave equally. The pragmatics of the given ECs is the reduction of the possible QSM
options for a certain SD task, i.e. it makes no sense to try to improve the querying cost by switching
between QSMs of the same EC. Along with QSM superiority results below, the ECs provide a general
guidance for proper QSM choice based on the type of application.

The proofs of the stated QSM equivalences are either direct consequences of the QSMs’ definitions
(Tab. 2, col. 3) or straightforward after simple algebraic transformations. For instance, EMCay, =
Gl since the latter can be equivalently transformed to the former by using p(ans(@Q) = 0) = 1 —
plans(Q) = 1). Further LC = M = H = ENT since there are only two possible query labels.
Interestingly, the EC wrt. = comprising Gl includes QSMs of three different query selection frameworks
(QS-FWs), namely US, IG and EMC (cf. Tab. 2). Note that the ECs including z-parameterized QSMs
represent infinitely many different ECs, one for each setting of z, e.g. ENT,. £ ENT, for r # s (cf.
Prop. 5). Note that some of the ECs wrt. = conflate to constitute a single EC wrt. =x. In particular,
those ECs merge which are equivalent except for their treatment of Vc(g)~ Hence, infinitely many ECs
wrt. = reduce to mere 7 ECs wrt. =x.

3.5 Superiority Between QSMs

Fig. 1 shows the QSM superiority relationships we derived. Basically, these can be proven using Def. 5,
Prop. 3, the QSM functions m(Q) (cf. Tab. 2) and QSM equivalences (cf. Tab. 3). For example, ENT,
for z > 0 is superior to H since ENTg = H and ENT, < ENT,. for z > r > 0 by Prop. 5. Note, by
Prop. 3.2, QSMs that satisfy the DPO (framed in Fig. 1) are proven superior to all that do not. Further,
there are no X-superiority relationships between QSMs in row =x of Tab. 3 due to Prop. 3.3, i.e. the
superiority graph (Fig. 1) collapses over strong queries X.

From the pragmatic viewpoint the superiority results are primarily relevant in a pool-based SD
scenario where a QSM is used to evaluate each query in a pool of queries and the best DQ is selected to
be shown to the oracle. Opting for a DPO-satisfying QSM then guarantees that no query is ever selected
for which there is a better, i.e. discrimination-preferred one in the pool. However, Fig. 1 must be read
with care. For instance, it is not granted just due to SPL, < KL that KL will always manifest a worse
performance (in terms of querying cost) than SPL,, for y > 1 in practice. The reason is that both QSMs
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SPLy (y>1)

SPL

SPL

v

W

(2>1) ENT.
KL RIO' RIO), BME EMCb ENT H

% = wu as per Prop. 5 %% = z not as per Prop. 5

Figure 1: QSM Superiority Relationships: m; — mq denotes that mgo < my (cf. Def. 5). Labeled
arrows are conditional relations (hold only if the label is true). Framed (circled) nodes indicate QSMs
that satisfy (are consistent with) the DPO. Other nodes without frame or circle are (in general) not
consistent with the DPO. For clarity, (1) whenever possible, only one node for each EC in Tab. 3, row

w9

=" is depicted, and (2) node e means that each incoming and outgoing arrow is to be combined.

follow quite different paradigms of query selection (cf. Tab. 2, col. 3). Rather of interest are superiorities
between related QSMs, e.g. those from a particular QS-FW (cf. Tab 2). For example, SPL, fory > 11is
superior to SPL and VE and implements the same preference paradigm (cf. ECs in Tab. 3), attempting
to eliminate half of the hypotheses in V. As a rule of thumb, we suggest to abide by this strategy:

Guide for choosing the appropriate QSM for Sequential Diagnosis:
Input: SD problem
Output: Best QSM to use

1. Decide upon which guery selection paradigm to employ (e.g. entropy-based if one trusts in
the a-priori probabilities p(h) versus greedy or risk-optimized otherwise, cf. discussions and
evaluations in [39, 35]).

2. Opt for the particular QSM adhering to this paradigm (as per ECs in Tab. 3 and QS-FWs in
Tab. 2) which is superior to all other related QSMs (as per Fig. 1).

For instance, assuming a case where no (reasonable) prior probabilities are available and one favors a
greedy hypotheses elimination strategy, one should (based on the parameter discussion before) prefer
SPLy« (with preferably small y* > 1, e.g. y* := 1.1) to the two QSMs SPL and VE.

3.6 Properties of Optimal Queries

We have investigated all the QSM functions m(Q) in Tab. 2 wrt. their theoretical optima. Most of the
QSM analyses were relatively simple, e.g., for SPL one can easily see that no input can be better than
one, say X, which satisfies | Vi | = | V| and | V| = 0. Moreover, e.g., for m € {H, GI} the existence
of a theoretical optimum follows from the functions’ concavity. We report that for all discussed QSMs,
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EC Requirements to Optimal Query

O] |p(V5)—p(V5)|—>min
©) |\V5|—\V§||—>min
® (I) Vg,n — min I1) |p( 29 —p(Vé)} — min
00 [p(V§) — max for some | VG| € {1,...,[V]—=1}]V
[p(Vg) — max for some |V | € {1,...,|V[—1}]
©® MIV=1Lv e{V], V5} (I1) p(V*) — max

@ M p(V*) <05V e{Vs,Vy} (1) [V*] — max

Table 4: Query optimality requirements for ECs ® of QSMs in Tab. 3: Roman numbers signalize
priority, i.e. higher numbered conditions are optimized over all queries that optimize lower numbered
conditions. An explanation of Vg, ,, can be found in the key of Tab. 2.

except for KL and EMCb, a (unique) theoretical optimum exists (Tab. 2, last col.). In fact, analysis of
the KL and EMCb functions yields only one stationary point which is a saddle point [33, Prop. 27, 31].

As a byproduct of studying the QSMs m, we derived sufficient and necessary criteria an optimal
query wrt. m and V must meet. Tab. 4 summarizes the results. Note, for KL and EMCb only necessary
criteria can be named (see indeterminate conditions in row @,(®). Nevertheless, these help to reduce the
search space, i.e. optimal queries must be among those satisfying the conditions. For instance, if Q;, Q;
satisfy | Vé"q| = | ng | and p( VJL,) > p( ng), then Q; cannot be optimal wrt. KL or EMCb.

3.7 Query Synthesis in Sequential Diagnosis

The criteria in Tab. 4 suggest a systematic construction of an optimal query wrt. a QSM and V in a
query synthesis SD scenario.* As discussed in Sec. 1, we propose to prefer query synthesis to pool-
based query selection particularly in SD applications where the generation of DQs or the computation
of queries’” QSM-values is costly, e.g. in model-based diagnosis tasks [39, 32]. Using query synthesis,
one will usually, assuming the existence of a large enough set of unlabeled queries I/ wrt. V, attempt to
synthesize only strong DQs. For this reason Tab. 4 just lists conditions for the QSMs corresponding to
the ECs in the =x-row of Tab. 3. Indeed, the optimality criteria in Tab. 4 target only properties of the
partition of a query, as we already anticipated at the beginning of Sec. 3. Therefore, given a QSM m to
be optimized, the idea is to first focus on the finding of a (nearly) optimal partition wrt. m and then try to
generate a query for this partition. To guide the search for the best partition towards promising solutions
first, heuristics g, derived from m’s optimality criteria can be leveraged. Our suggested strategy for
query optimization is as follows:

Query Synthesis Procedure:
Input: QSM m, set of hypotheses V', optimality threshold ¢,,,, (optionally) heuristic function g,,
Output: Strong discriminating query (DQ) wrt. V' (cf. Sec. 2) that optimizes m (up to t,,)

1. Perform a best-first search (using g,,,) over strong DPs wrt. V' (cf. Sec. 2) until an optimal
strong DP (as per t¢,,,) is found.
2. Generate a DQ for exactly this optimal DP.

4 For an in-depth treatment of the given query synthesis methods for SD, see the paper’s extended version [33, Sec. 3.4ff.].
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Notably, the first step does not involve any expensive operations, in particular no reasoning. The second
step, on the other hand, is expensive as logical reasoning is required. Hence, the aim of the query
synthesis procedure is to restrain as long as possible and thus minimize expensive operations during
query computation. In fact, this strategy ideally involves only the actual computation of a single query.
We next illustrate the two steps of the procedure in more detail.

Ad step 1 (Finding an optimal partition): We illustrate how the DP search might be realized by
means of a complete depth-first backtracking search making local best-first moves. A search problem
[36] is characterized by

(1) an initial state,

(ii) a successor function enumerating all direct neighbor states of a state,
(iii) some heuristics to estimate the remaining effort towards a goal state, and
(iv) a goal test to determine if a given state is a goal state or not.

Let in our case (i) be the partition By = (VF, V=, VO = (0, V, ) and (ii) map a partition to all
neighbors resulting from the transfer of some h € V'~ to V. The selection of (iii) and (iv) depends
on the concrete used QSM. Fig. 2 (right) shows heuristic functions g,,, we derived for all QSM ECs in
Tab. 3 (=x) using the optimality criteria in Tab. 4. The plausibility of g, for ECs ©, ®, ® and @ is
straightforward from Tab. 4. g,, for EC ®,® prefers a query () with lowest ratio between the expected
probability | Vg |/|1V] of | Vg | diagnoses in |V| and the actual probability p( Vé” ) of Vg . The heuristic
gm for EC @ returns the deviance of p( Va ) from 0.5 assuming that n — | Vg | further h; € Vi are
transferred to Vg , each with the expected probability p(V)/| V5 |.

Depth-first, local best-first strategy: At each state (partition 3) in the search tree the heuristic func-
tion g,, is used to evaluate all direct successor states of 3 and suggests the best state R’ (with minimal
heuristic value) to visit next.

Backtracking strategy: Given that all successors of a state *J3 have already been explored and no goal
state has been found yet, the search backtracks and visits the next-best unexplored sibling of ‘3.

Note, the functions g,,, in Fig. 2 are just example heuristics and depend on the selection of the other
search parameters (i), (ii) and (iv). For instance, [39] suggest a similar search — using different specifi-
cations of initial state and successor function, and only for QSMs ENT and SPL — with a heuristic based
on the CKK algorithm for number partitioning [20]. Our definition of (i) and (ii) is not amenable to
their heuristic (which assumes a binary tree with a maximum of two successors at each state). However,
as we show in this paper’s extended version [33], the search as we specify it here — with a slightly more
sophisticated successor function — is sound and complete (i.e. considers only and all strong DPs) and
enables the efficient determination of optimal strong DPs for all QSMs listed in Tab. 2 without using a
reasoner.

Example: Let us demonstrate the search using the QSM m := RIO’ with n := 2 (cf. the key of Tab. 2)
over V.= {hy, ..., hg} with (p(h1),...,p(he)) = (0.01,0.33,0.14,0.07,0.41, 0.04). Let the goal
test be true iff V., = 0 A |p( Vg) —p(Vg)|l < tm (cf. @ in Tab. 4) for the optimality threshold
tm = 0.05. Further, let the heuristic g, be as per ® in Fig. 2 (top right). Fig. 2 (top left) shows the
resulting search tree, displaying only best successors for each node. We can see that the tree includes
only three (explored) partitions o, B1, P2 where all but P, are strong DPs. Note, the heuristic g,,
guides the search directly to a goal *J3,, without any necessary backtrackings. [

Ad step 2 (Generating a query for the found partition): Let P’ = (V, V() be the strong DP
resulting from step 1. Then, according to Sec. 2, for each query Q € U with partition B’ (i.e. where

Pv(Q) = L) the following holds:
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Po :
(0| k1, h2, hs, ha, hs, he | 0) Heuristic functions g, for m in EC ®
probs : (0] 1]0) i
+y_ 1 +
h5l/0.41 ® |p(VQ)_§| ® “VQ|_7‘
¥ © (V) + (n— V222 1
(hs | B b b b, e | 0) p(Vg) +(n—=1Vgl) ol 3l
probs : (0.41 | 0.59 | 0) vt
gm = 0.028 OO |V|p(QV5) ® —p(Vg)
hg | 0.07 L I . i 1
T @ _|VQ|_p(VQ) lfp(VQ)<§
(ha, hs | h1, ha, hs, he | 0) —|V§|—p(V5) ifP(V$)>%
probs : (0.48 | 0.52 | 0)
1
G = 0.02 0 else
averages maxima

QSM  SS(%) DEV(%) ST(sec) QT(sec) SS(%) DEV(%) ST(sec) QT(sec)
ENT 33 0.0008 0.38 0.58 20.6 0.004 3.46 3.52
SPL 3.56 0 0.43 0.69 54.8 0 15.1 4.41

Figure 2: (Top Right:) Heuristics g,, for QSM ECs in Tab. 3 derived from Tab. 4. Lower g,, values
indicate better queries. (Top Left:) Heuristic search for optimal m := RIQ’ partition. Arrows point
to best successor partition as per the heuristic g, (see ®) and are labeled by the hypothesis h; and
by the probability mass transferred from V,, to Vé" . probs refers to (p( Vg ) | p(Vg) | p( Vo))
(Bottom.) First evaluation results for QSMs ENT, SPL.

(a) @ isastrong DQ, and
) (Vhe VT :hEans(Q)=1)A(Vh e V™ : h = ans(Q) = 0).

So, by means of (b) and a suitable reasoner, a strong DQ () can be computed. For example, in a model-
based circuit diagnosis task, asking if a particular wire is high would be a strong DQ if all hypotheses
in VT entail that it is high and all in V'~ entail that it is low.

Preliminary evaluation. To test the proposed query synthesis strategy, we adopted the same evalua-
tion setting on 8 real-world model-based diagnosis problems (MBD-Ps) as reported in [34]. In particular,
we performed 5 query synthesis runs for each combination of MBD-P and |V| € {10, 20, ...,80} where
V' is a hypotheses set wrt. MBD-P. In each of the 5 runs a different hypotheses set I was computed
for MBD-P in a random way by means of INV-HS-TREE [40] and a random reordering of its input.
Each hypothesis h € V was assigned a uniform random probability p(h). The used QSMs were SPL
and ENT. Note, the queries for the examined MBD-Ps (involving knowledge-based systems) cannot be
extracted from the system model, but are expensive to compute by means of an inference engine.
In the these experiments we measured averages and maxima (both taken over all runs) of

o the % of the complete search space of strong DPs (SS) actually explored by the search in step 1,

e the % deviation (DEV) from the theoretically optimal QSM-value achieved by the DP resulting
from step 1, and

o the search time (ST) required by step 1,
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e the query computation time (QT) required by step 2.

Preliminary evaluation results are are presented in Fig. 2 (bottom). For instance, for ENT, on aver-
age over all runs for all 8 MBD-Ps, an optimality of > 99.999% was achieved in 0.38 + 0.58 < 1 sec
by exploring just 3.3% of all strong DPs. Similar results could be observed for SPL.

In order to get a feeling for the benefits of the usage of query synthesis, we also tried to execute a
pool-based query selection in the described settings. This involves the generation of a pool of queries,
including at most one query for each DP wrt. V', and the subsequent selection of the best query from the
pool.

The first observation was that the pool-based strategy worked — i.e. terminated within a one hour
timeout — only for sets V' that included no more than 20, for three MBD-Ps actually no more than 10
hypotheses. By contrast, query synthesis could efficiently handle even all |V| = 80 cases. The rest of
the discussion refers to only the cases where |V'| = 10 and both methods succeeded for all MBD-Ps.

Second, the pool-based strategy consumed substantially more time than query synthesis. In fact, the
former required minimally / on average / maximally 27 / 787 / 2528 times (!) the time the latter needed
for query computation. By absolute numbers, the minimal / average / maximal pool-based strategy
execution time amounted to 6 / 137 / 566 sec whereas query synthesis for these cases never required
more than 0.6 sec.

Third, the pool-based approach required substantial reasoning (thousands of reasoner calls) due to
the implicit nature of the queries, as discussed above, and the large number of queries generated. Query
synthesis circumvents this by postponing reasoner calls, i.e. the actual query computation (step 2), until
an optimal partition is already fixed (step 1).

Fourth, taking the overall execution time of query synthesis as a timeout for pool-based selection,
the latter could only explore a minimum / average / maximum number of 0.4 / 7.0 / 36.5 partitions.
Besides, the pool-based method cannot profit from heuristics. Therefore, a pool-based strategy will
hardly be able to find an optimal query within the time bounds of query synthesis.

Overall, these findings indicate the high efficiency and query quality in terms of a given QSM
achieved by the proposed heuristic best-first query synthesis strategy. The made observations con-
firm the hypothesis that query synthesis is the method of choice (at least) for model-based diagnosis
problems with a query space of large size or implicit nature.

4 Conclusions

We analyzed various Active Learning strategies regarding their use for query selection in Sequential
Diagnosis (SD). Based on a precise and plausible definition of a query’s discrimination power, we
derived superiority relationships between query selection measures (QSMs) wrt. their output quality
and introduced new (improved) variants, e.g. for the popular information entropy QSM. Additionally,
we gave equivalence relationships between QSMs and deduced optimality criteria for them. The results
give guidance for using the right QSM in SD and let us design an efficient heuristic search procedure
for a systematic optimal query synthesis. A preliminary evaluation of the latter using real-world model-
based diagnosis problems proves (1) its power in terms of almost negligible computation time and
negligible deviation from the QSM-optimum, (2) its ability to compute optimally discriminating queries
for substantial sizes of considered fault hypotheses — owing to the exploitation of the derived heuristics,
(3) its drastic superiority to pool-based query selection (at least) in model-based problems involving
implicit or numerous queries.
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