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Abstract 

The shift from traditional diets to those high in fat and calories has led to an increase in obesity and 
related health issues, emphasizing the need for accurate dietary monitoring. Automated systems 
utilizing artificial intelligence (AI) have emerged as promising tools for providing personalized dietary 
advice through food classification. With the growing volume of food-related content on social media, 
including images and accompanying text, there is an increasing need to leverage multimodal data for 
more accurate predictions. This study compares two fusion techniques for food classification: early 
fusion and the multimodal Siamese Neural Network (mSNN). Using the UPMCFood-101 dataset, 
which includes images and text descriptions across 101 food categories, the analysis focuses on three 
specific classes: bread pudding, chicken wings, and waffles. While the study focuses on these three 
classes, the flexible architecture of both models suggests their potential for generalization to other food 
categories. The early fusion model demonstrated strong generalization, achieving an overall accuracy 
of 0.960. In contrast, the mSNN, trained with 72,000 pairs, achieved a peak accuracy of 0.976, 
outperforming the early fusion model in precision, recall, and accuracy, particularly with smaller 
image text per class in databases. However, the mSNN's performance declined with larger databases 
due to outlier effects that skewed average distance calculations, leading to reduced accuracy. These 
findings suggest that while the mSNN is more accurate with smaller datasets, the early fusion model 
provides better generalization. 

Keywords: Multimodal, Early fusion, Multimodal Siamese Neural Network 

 
1. Introduction 
 

Food plays a vital role in maintaining human health by providing the necessary energy and 
nutrients. However, dietary habits have significantly shifted with economic growth, moving from 
traditional diets to those high in fat, calories, and low in fiber. This transition has been linked to the 
growing prevalence of obesity and related health issues. Consequently, the importance of 
monitoring dietary intake and ensuring balanced nutrition has become increasingly recognized. To 
address these challenges, there is a growing interest in leveraging automated systems that provide 
personalized dietary advice, promoting healthier eating habits and reducing the risks associated 
with poor nutrition. In this context, artificial intelligence (AI) has emerged as a key tool in 
developing methods for accurately classifying food images, which is essential for effective 
nutritional management [1,2]. 

Recent advances in AI, particularly in deep learning, have significantly improved the accuracy 
of food classification. Convolutional Neural Network (CNNs) have been particularly successful in 
these tasks. The widespread use of smartphones has led to a surge in food images and related text 
shared on social media [3]. Consequently, vast amounts of food-related data, encompassing both 
images and text, have become readily available, presenting new opportunities and challenges for 
multimodal data fusion. The integration of these diverse data modalities has become a critical area 
of research, enabling models to leverage complementary information from various sources, thereby 
improving performance in complex classification tasks. 
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This study focuses on comparing two fusion techniques—early fusion and multimodal Siamese 
Neural Network (mSNN) —in the context of food classification. Fusion techniques are crucial for 
enhancing model accuracy and robustness by integrating different types of data, such as images and 
textual information. The UPMCFood-101 dataset, a comprehensive collection of images paired 
with text descriptions across 101 food categories, serves as the foundation for this research. Due to 
computational constraints, this study focuses on three specific classes from the dataset—bread 
pudding, chicken wings, and waffles—selected based on their high recall in preliminary testing 
with the early fusion model. In prior work, Gallo et al. employed early fusion on the full dataset, 
achieving high accuracy and demonstrating the effectiveness of this approach for food classification 
[4]. However, with the development of more advanced methods like multimodal Siamese network, 
it is necessary to explore whether these newer techniques can further enhance performance. 

Although this study specifically tests three food classes, the model architecture developed here 
can be generalized and applied to a broader range of food categories with minimal or no 
architectural modifications. The methodology used, which combines both image and text data, is 
designed to handle a variety of classes without requiring model-specific adjustments for individual 
categories. However, it is important to note that prediction accuracy may vary depending on the 
visual characteristics and textual descriptions specific to each food type. The flexibility of this 
multimodal data fusion approach suggests that it can be extended to include additional food types 
beyond those used in this experiment. Nevertheless, considerations must be given to computational 
requirements, as increasing the number of food categories directly impacts both training time and 
computational complexity. Therefore, while this work focuses on a limited number of classes due to 
computational constraints, the findings are expected to be applicable to other food categories, 
making the model suitable for real-world applications. 

Multimodal Siamese Neural Network (mSNN), introduced by Chakladar et al., offers a novel 
approach by learning discriminative features from different data modalities and integrating them 
into a common feature space [5]. Originally designed for biometric verification, this method has 
proven highly effective in tasks requiring the fusion of spatial and temporal features, such as image 
and EEG signal analysis. Given its success in these domains, it is essential to evaluate its potential 
for food classification, particularly in comparison to traditional early fusion techniques. 

The motivation for this research lies in identifying the most effective fusion technique for food 
classification, a task with significant implications for health monitoring and dietary analysis. By 
comparing early fusion with multimodal Siamese fusion using the UPMCFood-101 dataset, this 
study aims to determine which method offers superior performance in terms of accuracy and 
robustness. 

This paper is structured as follows: Section 2 details the research methodology, including the 
dataset, model architectures, and evaluation metrics. Section 3 presents the research results and 
discussion. Finally, the conclusion in Section 4 summarizes the key findings of this study and 
suggests directions for future research.  

2. Research Methodology 
 
 The following sections describe the dataset used in this study, the preprocessing steps applied to 
the data, the implementation of early fusion and multimodal Siamese fusion techniques, and the 
metrics used for evaluation.  
 
 2.1 Dataset 
 The UPMC Food-101 dataset, sourced from the Kaggle platform [4], is utilized in this study. 
Due to computational resource constraints, this research focuses on the three classes with the 
highest recall when tested using the early fusion model: bread pudding, chicken wings, and waffles. 
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These high-recall classes were selected to ensure that the models are evaluated on categories with 
reliable data. Table 1 provides a detailed breakdown of the dataset composition, including the 
number of image-text pairs for each class in the training, validation, and test sets. Table 2 presents 
examples of the image and text pairs for each class.  
 

Table 1: Summary of dataset composition 
Class Training dataset Validation dataset Test dataset 

Bread_pudding 610 67 226 
Chicken_wings 590 65 219 

Waffles 600 70 235 
Total 1800 202 680 

 
Table 2: Examples of image and text pairs for each food category 

Class Image Text Class Image Text 

Bread pudding 

 

Bread Pudding II 
Recipe - 

Allrecipes.com 
Bread pudding 

 

POLISHING 
OFF. . .: 
TOFFEE 
BREAD 

PUDDING W/ 
CINNAMON 

TOFFEE 
SAUCE 

Chicken wings 

 

Epic Dry-Rubbed 
Baked Chicken 

Wings - The 
Chunky Chef 

Chicken wings 

 

Chicken Wings 
with Blue 

Cheese Dip 
Recipe | 

MyRecipes.co
m 

Waffles 

 

Breads and 
Doughs-Pancakes 

and Waffles 
Recipes - Fine 

Cooking 

Waffles 

 

5 Quick 
Breakfast 

Recipes for 
Kids | Fashion 

Blog - 
Fashionandyou.

com 
 

2.2 Feature Extraction 
2.2.1 Image encoder 
The preprocessing of images involves resizing them to dimensions of 299 x 299 pixels, followed 

by normalization to a scale of 0 to 1. After preprocessing, the images are input into the InceptionV3 
model with the last two layers removed. Subsequently, average pooling with a filter size of 8 x 8 is 
applied, followed by dropout with a probability of 40%, and then flattening is performed. Finally, a 
dense layer is used to reduce the dimensionality to 128, resulting in extracted image features. This 
architecture is based on the work by Gallo et al. [4] and is illustrated in Figure 1.  

The input image is defined as 𝑖, the image model defined as ℋ and the output of ℋ is given as:  

 
  

 𝑌ℋ = ℋ	(𝑖) (1) 
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Figure 1: Diagram of the image encoder 
 
2.2.2 Text encoder 
In this research, several techniques are applied to preprocess the text data, including converting 

all text to lowercase, removing punctuation and numbers, eliminating single characters, and 
reducing multiple spaces. The BERT model is configured with the following parameters: English 
language uncased, 12 hidden layers, 768 hidden units, 12 self-attention heads, a vocabulary size of 
30,522 words, and a total of 110 million parameters. The preprocessed text is input into the BERT 
model, followed by a Long Short Term Memory networks (LSTM) layer with 128 units, resulting 
in extracted text features. This approach follows the methodology described by Gallo et al. [4] and 
is illustrated in Figure 2. 

The input text is defined as 𝑡, the text model defined as 𝒲 and the output of 𝒲 is given as  

Figure 2: Diagram of the text encoder 
 
2.3 Data fusion 
2.3.1 Early fusion  
The architecture of early fusion is influenced by previous work [4], which takes a pair of inputs 

consisting of a food image and text. In Figure 3, the left region represents the image model that uses 
image data as input. The right region represents the text model that uses text data as input. In the 
fusion method, both are then concatenated and fed into a neural network to produce the final 
prediction. 

 𝑌𝒲 =𝒲(𝑡) (2) 
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Figure 3: Diagram of the early fusion architecture. 
This early fusion is learned to predict class probabilities independently for each sample. 

Therefore, the loss is calculated by Cross-Entropy Loss. We denote the output from concatenate 
from both the image and text encoders as 𝑌! ,  the image model as ℋ, the text model as 𝒲, and the 
concatenate of the results from the image and text models as ⊕. The input image is defined as 𝑖, the 
input text is defined as 𝑡, and the ground truth is defined as 𝐺. 

The cross-entropy loss function 𝐿 is used as the objective function to measure the fitness 
between the output and target (𝑥, 𝐺). Let 𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌!) where 𝑐 indicates the class label. 

2.3.2 multimodal Siamese Neural Network  
 Siamese neural network is a class of neural network architectures that consist of two 
subnetworks with the same parameters and weights. This network accepts the distinct inputs that 
are either similar or dissimilar then they are joined by an energy function at the top, which 
computed distance metric between the highest-level feature representation on each side of the 
network [6]. 
 Multimodal Siamese network extend traditional Siamese network to incorporate two different 
modalities. The proposed model compares two input samples (𝑥", 𝑥#), where 𝑥" = (𝑖", 𝑡") and 𝑥# =
(𝑖#, 𝑡#) using the distance between them in the common space, calculated according to a contrastive 
loss function [7]. Here, 𝑖 and t correspond to the food image and text, respectively. The first 
subnetwork processes the image and text from 𝑥", while the second subnetwork processes the 
image and text from 𝑥#, which may belong to the same or opposite class as 𝑥".  

Consider a multimodal dataset of sample pairs denoted as 𝒟 = {𝑖$ , 𝑡$}$%"& , where each 𝑖$ and 𝑡$ 
correspond to the food image and text of the 𝑘'( sample, respectively. The goal of this method is to 
develop two encoders that transform the image and text into a common space (𝜓). The encoded 
outputs from both the image and text encoders are concatenated, which is used to measure the 
similarity between the embeddings of two sample pairs in the common space (𝜓). The image 
encoder utilizes Convolutional Neural Network (CNNs) to map images into the common space, 
represented as ℋ:	ℐ ⟶ 𝜓. The text encoder uses BERT and LSTM to project text inputs into the 

 𝑌# = ℋ(𝑖) 	⊕𝒲(𝑡) (3) 

 
𝐿(𝑥, 𝐺) = 	−0𝐺$ log(𝑥$)

%

$&'

 (4) 
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common space, denoted as 𝒲:	𝒯⟶ 	𝜓. Finally, the output from two subnetworks is passed through 
a contrastive loss function to generate the final output, as shown in Figure 4.  [5,8].  

 

Figure 4: Diagram of the multimodal Siamese Neural Network architecture. 
According to the contrastive loss defined in equation (5), 𝑈 indicates whether the inputs (𝑥", 𝑥#) 

are similar or dissimilar. When 𝑈 is equal to one, it indicates that the inputs (𝑥", 𝑥#) are similar 
representations, resulting in a small distance between them. Conversely, when 𝑈 equal to zero, it 
indicates that the inputs (𝑥", 𝑥#) are dissimilar representations, resulting in a distance greater than a 
specified margin value (𝑚). In this study, the margin 𝑚 is set to 1. 

The output from first subnetwork is defined as 𝑌!" from input 𝑥", where 𝑥"= (𝑖",𝑡")    

The output from second subnetwork is defined as 𝑌!# from input 𝑥# where 𝑥#= (𝑖#,𝑡#)    

Here, 𝐷 represents the Euclidean distance between concatenated outputs from two subnetworks, 
𝑌!" and 𝑌!#. 

Since the contrastive loss measures the distance between inputs, this study uses it to classify 
inputs by selecting the pair with the smallest distance. 

2.4 Evaluation 
The primary metric used to evaluate model performance is accuracy. Additionally, precision and 

recall metrics are calculated. 
 
3. Research Results and Discussion 
 

This section evaluates the performance of early fusion and multimodal Siamese Neural Network 
in classifying food classes using text and image data. We first present results from the early fusion 
model (Section 3.1), followed by the results from the multimodal Siamese Neural Network under 
various configurations (Section 3.2). A comparative analysis of both models is then discussed in 
Section 3.3. Finally, Section 3.4 discusses the analysis of failure cases on larger database sizes. 
  

 𝐿(𝐷, 𝑈) = 𝑈𝐷( + (1 − 𝑈)max	(𝑚 − 𝐷, 0)( (5) 

 𝑌#' = ℋ(𝑖') 	⊕𝒲(𝑡') (6) 

 𝑌#( = ℋ(𝑖() 	⊕𝒲(𝑡() (7) 

 𝐷 =	‖𝑌#' −	𝑌#(	‖( (8) 
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3.1 Early fusion 
The performance metrics of the early fusion model, applied to three food categories from the 

UPMCFood-101 dataset—bread pudding, chicken wings, and waffles—are displayed in Table 3. 
This table shows the precision and recall values for each class, revealing that bread pudding 
achieved the highest precision. Similarly, the highest recall rates were noted for waffles. The model 
demonstrated an overall accuracy of 0.960, which will serve as a benchmark for subsequent 
comparisons with multimodal Siamese Neural Network. 
 

Table 3: Performance metrics of the early fusion model. 
Class Precision Recall Accuracy 

Bread pudding 0.977 0.958 
0.960 Chicken wings 0.963 0.954 

Waffles 0.942 0.970 
  

3.2 Multimodal Siamese Neural Network 
The performance of the multimodal Siamese Neural Network (mSNN) was evaluated by varying 

the number of training pairs and adjusting the sample size per class in the testing database. The 
training was conducted with four distinct sets of pair counts: 7,200, 36,000, 72,000, and 108,000. In 
testing, each sample from the test set was paired with entries from a database to predict its class 
based on the lowest average of predictions. The number of samples per class in the database was 
varied, with configurations of 1, 10, 20, and 30. The results, as outlined in Tables 4(a) through 4(d), 
show significant improvements in precision, recall, and accuracy with increased training volumes 
and larger database sizes. 

Initially, with 7,200 training pairs, both accuracy and other metrics like precision and recall were 
relatively low for most classes. However, as the number of training pairs increased to 36,000, there 
was a notable improvement across all metrics. The highest accuracy reached up to 0.97 with 72,000 
training pairs, as detailed in Table 4(c), suggesting a correlation between the number of training 
samples and model accuracy. Conversely, the data from 108,000 training pairs, as shown in Table 
4(d), exhibited consistent metrics across different testing configurations, potentially indicating 
overfitting; this implies that further increases in training data may not proportionally enhance 
performance.  

The overall results demonstrate that increasing the amount of training data generally correlates 
positively with the accuracy of the model, highlighting the beneficial impact of larger datasets on 
model performance. However, excessive addition of the training dataset can lead to overfitting, 
where the model becomes too tailored to the training data and less effective at generalizing to new 
data. Furthermore, the results suggest that increasing the number of samples per class in the 
database does not enhance model accuracy. These findings and their implications are discussed in 
more detail in Section 3.4 of the document.  
 

Table 4(a) Performance metrics of the mSNN model with 7,200 training pairs across different database sizes 
 1 ITPC-DB 10 ITPC-DB 20 ITPC-DB 30 ITPC-DB 

Class P R A P R A P R A P R A 

Bread pudding 0.533 0.354 
0.518 

0.000 0.000 
0.390 

0.000 0.000 
0.337 

0.000 0.000 
0.322 Chicken wings 0.451 0.840 0.346 1.000 0.091 0.005 0.322 1.000 

Waffles 0.721 0.374 0.979 0.196 0.341 0.970 0.000 0.000 
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Table 4(b) Performance metrics of the mSNN model with 36,000 training pairs across different database sizes 
 1 ITPC-DB 10 ITPC-DB 20 ITPC-DB 30 ITPC-DB 

Class P R A P R A P R A P R A 

Bread pudding 0.972 0.938 
0.946 

0.984 0.836 
0.912 

0.985 0.898 
0.932 

0.986 0.903 
0.935 Chicken wings 0.948 0.913 0.856 0.922 0.909 0.913 0.914 0.918 

Waffles 0.920 0.983 0.909 0.974 0.909 0.983 0.913 0.983 
 
Table 4(c) Performance metrics of the mSNN model with 72,000 training pairs across different database sizes 

 1 ITPC-DB 10 ITPC-DB 20 ITPC-DB 30 ITPC-DB 

Class P R A P R A P R A P R A 

Bread pudding 0.982 0.982 
0.976 

0.982 0.956 
0.966 

0.982 0.978 
0.974 

0.974 0.982 
0.974 Chicken wings 0.991 0.959 0.991 0.959 0.991 0.959 0.991 0.959 

Waffles 0.959 0.987 0.931 0.983 0.951 0.983 0.958 0.979 
 

Table 4(d) Performance metrics of the mSNN model with 108,000 training pairs across different database sizes 
 1 ITPC-DB 10 ITPC-DB 20 ITPC-DB 30 ITPC-DB 

Class P R A P R A P R A P R A 

Bread pudding 0.953 0.978 
0.966 

0.953 0.978 
0.966 

0.953 0.978 
0.966 

0.953 0.978 
0.966 Chicken wings 0.986 0.950 0.986 0.950 0.986 0.950 0.986 0.950 

Waffles 0.962 0.970 0.962 0.970 0.962 0.970 0.962 0.970 
ITPC-DB: image text per class in database, P: precision, R: recall, A: accuracy 
 

3.3 Comparative Analysis 
To provide a meaningful comparison between the early fusion model and the multimodal 

Siamese Neural Network (mSNN), the configuration with 72,000 training pairs was chosen for the 
mSNN. This decision is based on the observation that the mSNN at 72,000 pairs achieved its 
highest overall accuracy, making it the most reliable and robust version of the model without 
showing signs of overfitting, which were observed with 108,000 pairs. When comparing the 
precision and recall across the three food classes—bread pudding, chicken wings, and waffles—the 
mSNN generally demonstrates higher precision and recall compared to the early fusion model. 
Specifically, the mSNN outperforms the early fusion model across all metrics when tested with 1 
sample and 20 samples per class in the database.  

In terms of accuracy, the mSNN with 72,000 pairs consistently outperforms the early fusion 
model across various database configurations (1, 10, 20, 30 ITPC-DB). The mSNN reaches a peak 
accuracy of 0.976 when tested with 1 database, while the early fusion model achieves an accuracy 
of 0.960, as shown in Table 5. Overall, the key takeaway from this comparison is that the mSNN 
with 72,000 pairs offers higher accuracy and slightly better performance on specific metrics 
compared to the early fusion model. These findings suggest that the mSNN is more suitable for 
applications where maximizing accuracy is critical, particularly when sufficient training data is 
available. 

Although this study focuses on three specific food classes, the results indicate that the model 
architecture can be generalized to accommodate additional food classes. The structure of both the 
early fusion and mSNN models was not tailored specifically to these three classes, suggesting that 
the models are capable of handling other categories of food data. The ability to integrate both image 
and text data in a flexible manner makes the models applicable to a wide range of food types 
beyond those tested in this study. 

Furthermore, the processing techniques used in this research, which fuse information from 
images and text, are designed to handle multimodal data inputs. This design allows the models to 
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generalize effectively to different types of food classes without requiring adjustments to the model 
architecture. This suggests that, despite the limited number of classes tested, the findings can be 
extended to broader applications where a more comprehensive set of food categories is involved. 
The flexibility of the multimodal fusion approach enhances the potential for generalization to other 
domains or datasets with similar multimodal characteristics. 

 
Table 5: Comparison of model accuracy 

Model Accuracy 
Early fusion 0.960 

mSNN (72,000 pairs, 1 ITPC-DB) 0.976 
mSNN (72,000 pairs, 10 ITPC-DB) 0.966 
mSNN (72,000 pairs, 20 ITPC-DB) 0.974 
mSNN (72,000 pairs, 30 ITPC-DB) 0.974 

 

3.4 Analysis of Failure Cases on Larger Database Sizes 
While the multimodal Siamese Neural Network (mSNN) generally demonstrates strong 

performance, a significant drop in accuracy occurs as the number of database samples per class 
increases. This section explores the underlying causes of these failure cases and provides insights 
into the model's limitations. 

Table 6 presents an example of misclassification, where a bread pudding image was incorrectly 
classified as waffles when tested with 10 samples per class in the database. This misclassification 
occurred due to the presence of a few outlier distances within the bread pudding class, such as 
5.728 and 1.701, which disproportionately raised the average distance for the bread pudding class. 
The average distance calculated for bread pudding was 1.110, compared to 1.247 for chicken wings 
and 0.737 for waffles. These outliers caused the average distance for bread pudding to be higher 
than that for waffles, leading the model to incorrectly predict the test image as waffles, based on the 
lowest average distance.  

This failure highlights a key vulnerability of the mSNN: its reliance on averaging distances can 
lead to errors when outliers are present. As the database size increases, the likelihood of such 
outliers also rises, leading to more frequent misclassifications. This analysis explains why the 
mSNN may perform better with smaller image text per class in databases but struggles with larger 
ones. To address this issue, future work could incorporate outlier detection mechanisms to improve 
the model’s robustness.  

Table 6 Distance predictions of the mSNN for a test image of bread pudding against a database of 10 samples per class. 

Database Predict 
distance 

Average 
distance 
per Class 

Database Predict 
distance 

Average 
distance 
per Class 

Database Predict 
distance 

Average 
Distance 
per Class 

Bread 
pudding1 0.421 

 
 
 
 
 
 
 

1.110 

Chicken 
wings1 1.250 

 
 
 
 
 
 
 

1.247 

Waffles1 0.764 

 
 
 
 
 
 
 

0.737 

Bread 
pudding2 0.492 Chicken 

wings2 1.268 Waffles2 0.743 

Bread 
pudding3 0.482 Chicken 

wings3 1.254 Waffles3 0.722 

Bread 
pudding4 5.728 Chicken 

wings4 1.237 Waffles4 0.714 

Bread 
pudding5 0.414 Chicken 

wings5 1.252 Waffles5 0.762 

Bread 
pudding6 0.494 Chicken 

wings6 1.262 Waffles6 0.715 

Bread 
pudding7 0.488  Chicken 

wings7 1.178  Waffles7 0.685  
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Table 6 (Continued)  

Database Predict 
distance 

Average 
distance 
per Class 

Database Predict 
distance 

Average 
distance 
per Class 

Database Predict 
distance 

Average 
Distance 
per Class 

Bread 
pudding8 1.701  Chicken 

wings8 1.253  Waffles8 0.749  

Bread 
pudding9 0.450  Chicken 

wings9 1.249  Waffles9 0.749  

Bread 
pudding10 0.428  Chicken 

wings10 1.263  Waffles10 0.764  

 
4. Conclusions and Recommendations 

 
This study explored and compared two models for image and text data fusion in food 

classification: the early fusion model and the multimodal Siamese Neural Network (mSNN). The 
early fusion model demonstrated strong generalization capabilities, achieving an overall accuracy of 
0.960. In contrast, the mSNN, when trained with 72,000 pairs, reached a peak accuracy of 0.976, 
outperforming the early fusion model in precision, recall, and accuracy when tested with smaller 
image text per class in databases. However, the mSNN exhibited vulnerabilities as database size 
increased, leading to reduced accuracy due to outlier effects that skewed average distance 
calculations. These findings suggest that while the mSNN offers superior accuracy in controlled and 
data-rich scenarios, its performance may degrade in larger, more varied datasets. In such 
environments, the early fusion model, though slightly less accurate, provides a more reliable and 
robust alternative.  

Although this study focused on three specific food classes, the flexible architecture of both 
models suggests that they can be applied to other food categories without significant modifications. 
The results obtained here indicate that the models, particularly the mSNN, have the potential for 
generalization to a broader range of food classes in real-world applications. This suggests that, 
despite the limited number of classes tested, the models can be extended to include more diverse 
categories with minimal adjustments. 

In future research, our objective is to address the issue of outliers in model predictions to 
improve the robustness of the mSNN, particularly when testing with larger databases. Additionally, 
further studies should evaluate the scalability of both models with significantly larger classes and 
diverse data types to better understand their limitations and identify potential enhancements for 
real-world applications. It is also recommended to incorporate a comparison with state-of-the-art 
models, such as Vision-based Transformers, which have demonstrated strong performance in visual 
tasks. This comparison could provide deeper insights into how transformer architectures might 
outperform traditional fusion models in the context of multimodal food classification. 
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