
EasyChair Preprint
№ 8259

Non-Blocking Atomic Snapshot Algorithms in
MPI Remote Memory Access

Naveen, Alexey A. Paznikov and
Mujtaba Nazar Kadhim Al-Khaykanee

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 12, 2022

Non-blocking atomic snapshot algorithms in MPI remote memory access

Naveen

 Informatics and Computer

Engineering

 St. Petersburg Electrotechnical

University "LETI"

 naveensheoran1000@gmail.com

Alexey A. Paznikov

 Informatics and Computer

Engineering

 St. Petersburg Electrotechnical

University "LETI"

 apaznikov@gmail.com

Al-Khayakanee Mujtaba

Nazar Kadhim

 Informatics and Computer

Engineering

 St. Petersburg Electrotechnical

University "LETI"

 mujtabatoby2b@gmail.com

ABSTRACT

In this paper, we present the non-blocking atomic snapshot

algorithms for High-Performance Computing in MPI RMA model.

An Atomic Snapshot is useful for remote memory access where

different processes have access to the concurrent data structure.

Applications of atomic snapshot building multi-writer registers

from single-writer registers, radar tracking system, counters,

accumulators, check-pointing and concurrent backups, etc.

Snapshots also useful for monitoring the parallel systems. An

Atomic snapshot contains two operations update and scan.

In update processor writes the content to associated location and

scan gives the linearizable view of all n segments. This paper

presents non-blocking atomic snapshot in which update used

MPI_Accumulate and MPI_Compare_and_swap atomic

operations. In scan we used MPI_Get_accumulate operation for

reading the register values atomically. In this paper, we proposed

two non-blocking atomic snapshot algorithms. One algorithm for

one snapshot and second algorithm for new and old snapshot.

KEYWORDS

Non-Blocking Atomic Snapshot, MPI RMA, Shared Memory,

CAS

1 Introduction

An Atomic snapshot contains two operations update and scan [1].

In update processor writes the content to associated location and

scan gives the linearizable view of all n segments [1].

Linearizability [4] is the fundamental requirement for designing the

concurrent data structure. Past two decades authors expressed their

view on atomic snapshot but mostly theoretical [2,3] work. In this

paper we present the non-blocking atomic snapshot in MPI RMA

model. In atomic snapshot memory, memory is partitioned into n

parts, each partition for one processor, where each processor can

write and all other processors can read the latest updated values. In

the term of consistency guarantees 3 types of registers: Safe,

Regular and Atomic [5].

In this algorithm, we used MPI_Accumulate and

MPI_Compare_and_swap which are atomic operations.

MPI_Accumulate performs the atomic update and in this algorithm,

we used MPI_Op - MPI_REPLACE in MPI_Accumulate. In fig. 1,

one-sided communication in MPI RMA processes can read and

write on remote memory. In this paper, we design the single-writer

multi-reader snapshot algorithm for MPI RMA model. Each

process can update the value on the shared memory buffer also

known as window buffer at only one position according to its rank

as shown in fig. 2 and all processes can read this window buffer

atomically. For update operation we used the MPI_Accumulate and

MPI_Compare_and_swap atomic operations. MPI_Accumulate

provides atomic read-and-update operations.

In MPI RMA two types of synchronization calls: 1. Active target

communication, 2. Passive target communication. In this paper, we

used Active target communication synchronization call. In active

target communication when data is moved from one process to

another, both processes are involved in the communication [6].

For synchronization we used MPI_Win_fence. MPI_Win_fence is

the simplest Active target synchronization. In Window all

processes collectively call fence for synchronization.

Window buffer is shared array for all processes. In update operation

each process updates its value according to window buffer position,

if process 0 wants to update the window buffer array, then it will

update at 0th position of the window buffer as shown in Fig. 2 and

for process 1 window buffer’s 1st position and so on until all

processes finished update operation.

Window buffer (W_b[0,1,2, …,n]):

 Figure 1: Update by Processes

 Figure 2: Scan by Processes

2 Non-blocking Atomic Snapshot Algorithm for

one Snapshot

update(rank,size, window_buffer1, window_buffer2,window)

begin

1. Integer: update=rank;

2. for i=0 to size-1

3. do

4. MPI_Accumulate(update , i , update*sizeof(int) ,

MPI_REPLACE, window);

5. If(window_buffer2[i] != window_buffer1[i])

6. MPI_Compare_and_swap(window_buffer2[i],

window_buffer1[i]);

7. od;

 end update;

 scan(rank, size, window_buffer1, window_buffer2,window)

 begin

1. for i=0 to size-1

2. do

3. MPI_Get_accumulate(window_buffer2[i], rank,

i*sizeof(int), MPI_NO_OP, window);

4. od;

 end scan

3 Non-blocking Atomic Snapshot Algorithm for

old and new Snapshot

update(rank,size,window_buffer1,new_snap,old_snap,windo

w)

begin

1. Integer: update=rank;

2. for i=0 to size-1

3. do

4. MPI_Fetch_and_op(&new_snap[i],&old_snap,MPI_IN

T,rank,i*sizeof(int),MPI_REPLACE,window);

5. MPI_Accumulate(update , i , update*sizeof(int) ,

MPI_REPLACE, window);

6. If(new_snap[i] != window_buffer1[i])

7. MPI_Compare_and_swap(new_snap[i],

window_buffer1[i]);

8. od;

 end update;

 scan(rank, size, new_snap, old_snap, window)

 begin

1. for i=0 to size-1

2. do

3. MPI_Get_accumulate(old_snap[i], rank, i*sizeof(int),

MPI_NO_OP, window);

4. MPI_Get_accumulate(new_snap[i], rank, i*sizeof(int),

MPI_NO_OP, window);

5. od;

 end scan

here. Insert paragraph text here. Insert paragraph text here. Insert

paragraph text here. Insert paragraph text here. Insert paragraph

text here. Insert paragraph text here. Insert paragraph text here.

Insert paragraph text here. Insert paragraph text here.

4 Comparison of snapshot algorithms

Table 1– Comparison According to Primitive used

Snapshot Algorithm Primitive used

Lock Free r/w register

Block Update r/w register

Anderson r/w register

Afek et al r/w register

Aspnes and Herlihy r/w register

Dwork et al r/w register

Chandra Dwork LL/SC

Rachman Dyn. T&S

Attiya and Herlihy T&S

Attiya and Rachman r/w register

Kirousis et al r/w register

Coordinated collect LL/SC

Non-blocking Atomic Snapshot … CAS

5 Benchmark

For testing these algorithms, we used HPE Cray EX Supercomputer

and test the results of scan and update operations for different nodes.

Table 1 – Execution Time for update on 2 Nodes

No of Updates No of Nodes Execution

Time(seconds)

512 2 50.2962

256 2 12.4448

128 2 2.8598

64 2 0.7223

32 2 0.2517

16 2 0.0805

8 2 0.0400

2 2 0.0222

As we can see in the table 1 when we used 2 updates on 2 nodes

it’s pretty fast. For this it took only 0.0222 s but when we increase

the no of updates to 8 then it took more time as compare to 2

updates.

And when we increase the updates from 64 to 128 then execution

time increase approximate 4 times.

But when we increase the updates 512 then on 2 nodes it so time

consuming as we can see 50.2962 s. So now we need more nodes

in parallel to reduce this execution time.

Table 2 — Execution Time for 128 Scans

No of

Scans

No of Nodes Execution

Time(seconds)

128 2 0.05236

128 4 0.04925

128 8 0.04814

128 16 0.04693

128 32 0.04463

 Table 3 — Execution Time for 128 updates

No of Updates No of Nodes Execution

Time(seconds)

128 2 2.9000

128 4 2.8598

128 8 2.0034

128 16 1.1490

128 32 0.9555

Table 4 —Execution Time for 256 updates

No of Updates No of Nodes Execution

Time(seconds)

256 2 12.4448

256 4 11.6189

256 8 7.6956

256 16 4.2775

256 32 2.6203

Conclusion

In this paper we present non-blocking atomic snapshot algorithms

for High Performance Computing in MPI RMA model. We

designed the single-writer multi-reader algorithm where each

process can update the assigned position for example Process 0 can

update 0th position of shared memory and Process 1 can update 1st

position of shared memory and so on. But all processes can read

any position of the shared memory without locking. Using 2nd

algorithm, we can take the two non-blocking atomic snapshot as

mentioned in algorithm old snap and new snap of the shared

window buffer. In future work we will design the non-blocking

multi-writer multi-reader atomic snapshot for High-Performance

Computing in MPI RMA.

REFERENCES
[1] Riany, Yaron, Nir Shavit, and Dan Touitou. "Towards a practical snapshot

algorithm." Theoretical Computer Science 269.1-2 (2001): 163-201.

[2] Afek, Yehuda, et al. "Atomic snapshots of shared memory." Journal of the ACM

(JACM) 40.4 (1993): 873-890.

[3] Abrahamson, Karl. "On achieving consensus using a shared memory."

Proceedings of the seventh annual ACM Symposium on Principles of distributed

computing. 1988.

[4] Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness

condition for concurrent objects." ACM Transactions on Programming

Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

[5] Israeli, Amos, and Amnon Shaham. "Optimal multi-writer multi-reader atomic

register." Proceedings of the eleventh annual ACM symposium on Principles of

distributed computing. 1992.

[6] MPI: A Message-Passing Interface Standard Version 4.0: page 593.

