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Abstract. 
Cutting of natural and artificial building materials is most often carried out 
with diamond cutting disks on a metal base at cutting speeds of about 50-80 
m / s. The intensity of the cutting process causes a significant heat release, as 
a result of which the disk temperature rises to unacceptable values. The value 
of these unacceptable temperatures is about 600 - 6500С. 
At these temperatures, graphitization of diamond grains occurs, i.e. loss of 
diamond layer and loss of cutting properties. In addition, a thin diamond disk 
(thickness 1 - 3 mm) is deformed, which leads to jamming and its tensile 
strength at these temperatures is reduced by half, which creates the risk of 
rupture by centrifugal forces. 
In this work, it is taken into account that during the rotation of the disk, a 
boundary layer of air is created around it, which is stationary relative to the 
disk. Consequently, contact heat transfer occurs between the disk and the 
boundary layer, and then convective heat transfer occurs between the 
boundary layer and the surrounding air. This scheme allows you to more 
accurately determine the time of safe operation of the diamond disk. 
Contact heat transfer between the wheel and the boundary layer is not 
effective enough to lower the temperature. 
When air with a negative temperature is introduced into the boundary layer 
by means of a Rank-Hillsch tube, the disk temperature decreases by about 
10%. 
When a sprayed coolant (fog cooling) is introduced into the boundary layer 
by means of an ejector tube, the disk temperature decreases by 25%, which 
ensures an increase in the time of continuous operation. 

Key words. Boundary layer, air pressure, boundary layer thickness, cutting 
zone, mathematical modeling, cooling media, operating time, diamond disc. 

1. Introduction 

Cutting of natural and artificial building materials is most often carried out with 
diamond cutting disks on a metal base at cutting speeds of about 50-80 m/s. The 
intensity of the cutting process causes a significant heat release, as a result of which 
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the disk temperature rises to unacceptable values. The value of these unacceptable 
temperatures is about 600 - 6500С. 

At these temperatures, graphitization of diamond grains occurs, i.e. loss of 
diamond layer and loss of cutting properties. In addition, a thin diamond disk 
(thickness 1 – 3 mm) is deformed, which leads to jamming and its tensile strength at 
these temperatures is reduced by half, which creates the risk of rupture by centrifugal 
forces. 

Thus, the heating temperature of the disk should not exceed 600 ºС. Therefore, the 
operating time of a diamond cutting disc is the time during which it is heated during 
continuous operation to a temperature of 600 ºС. The longer this time, the higher the 
resistance of the diamond blade. In the present work, mathematical modeling is 
performed taking into account contact heat transfer between a rotating disk and a 
boundary layer 

The simulation of the process of interaction of the disk with the environment is 
carried out according to the results of which it is possible to determine the time of disk 
performance. However, in this paper, convective heat transfer between the disk and 
the surrounding air is considered at a time when the heat transfer process is more 
complex. When the disk rotates around it, a boundary layer of air is created that is 
stationary relative to the disk. Consequently, contact heat transfer occurs between the 
disk and the boundary layer, and then convective heat transfer occurs between the 
boundary layer and the surrounding air. This scheme allows you to more accurately 
determine the time of safe operation of the diamond disk. 

1 Literature Review 

A significant number of works devoted to this subject firstly consider convective heat 
transfer between the disk and air, moreover, at high Reynolds numbers, which does 
not correspond to our case. Works [2-14] consider precisely such cases, therefore, the 
data presented in these works cannot be used in our studies. 

Research Methodology 
The purpose of this work is to investigate the contact heat transfer process between 
a wheel and a boundary layer of air, based on which to determine the possibilities of 
cooling a rotating wheel by changing the thermophysical characteristics of the 
boundary layer. 

The tasks to be solved in this paper are as follows. 
1. Mathematical modeling of the heat transfer process to determine the intensity 

of the latter. 
2. Mathematical modeling of the disk cooling process when changing the 

thermophysical characteristics of the boundary layer. 
Calculations are carried out in accordance with the scheme presented in Fig.1. 
Here is a solution for a thin rotating disk heated at the end in the contact area and 

cooled from the side surfaces as a result of contact heat exchange with the boundary 
layer. Fig. 1 [15.16]. 



 
Figure 1. Design scheme for cooling of a rotating disk 

A thick disk h  rotates in a plane XOY  with angular velocity ω . At the end of the 
circle, within the limits of the contact arc, a heat source of intensity ( , )q tϕ  is 
defined, depending on the cutting conditions. On the lateral surfaces of the disk and 
outside the contact arc, heat transfer occurs at the end according to the Newton-
Richmann law, and on the lateral surfaces of the disk heat transfer is considered not 
with the environment, but with the boundary layer, the temperature of which can be 
varied over a wide range up to -50 °C. 

The boundary-value heat conduction problem for a thin disk in the presence of 
heat transfer through the side surfaces, taking into account the angular velocity in the 
polar coordinate system ( , )ρ ϕ , has the form: 

𝜕𝜕𝑡𝑡𝑇𝑇 = 𝑎𝑎(𝜕𝜕𝑟𝑟2 + 𝜌𝜌−1𝜕𝜕𝑟𝑟 + 𝜌𝜌−2𝜕𝜕𝜑𝜑2)𝑇𝑇+ 𝜔𝜔𝜕𝜕𝜑𝜑𝑇𝑇 −
2𝛼𝛼∗
𝜌𝜌𝜌𝜌𝜌𝜌

(𝑇𝑇 − 𝑇𝑇𝜌𝜌𝑏𝑏),                     (1) 

𝜕𝜕𝑟𝑟 =
𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝜕𝜕𝜑𝜑 =

𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝜕𝜕𝑡𝑡 =

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑇𝑇 ≡ 𝑇𝑇(𝜕𝜕,𝜕𝜕, 𝜕𝜕)
 

Initial condition 
𝑇𝑇(𝜌𝜌,𝜕𝜕, 𝑧𝑧, 𝜕𝜕)|𝑡𝑡=0 = 𝑇𝑇0 (2) 

Boundary conditions 
−𝜆𝜆𝜕𝜕𝜌𝜌𝑇𝑇(𝑀𝑀, 𝜕𝜕)�

𝜌𝜌=𝑅𝑅
= 𝛼𝛼(𝑇𝑇(𝑀𝑀, 𝜕𝜕)|𝜌𝜌=𝑅𝑅 − 𝑇𝑇𝜌𝜌𝑐𝑐),𝜕𝜕 ∉ [𝜕𝜕1,𝜕𝜕2]

𝜕𝜕𝜌𝜌𝑇𝑇(𝑀𝑀, 𝜕𝜕)�
𝜌𝜌=𝑅𝑅

= −
𝑞𝑞(𝜕𝜕)
𝜆𝜆 ,𝜕𝜕 ∈ [𝜕𝜕1,𝜕𝜕2]

 
 
 
(3) 

where  𝑇𝑇𝜌𝜌𝑏𝑏 − boundary layer temperature; 𝑇𝑇0 − initial disk temperature; 𝛼𝛼∗ − 
coefficient  of  convective heat transfer  between rotating disc and boundary layer, 𝑐𝑐 − 
specific heat, (Jkg⋅grad); 𝜌𝜌 −substance density (kg/m3)𝜌𝜌𝑐𝑐 −  (𝐽𝐽/ (𝑚𝑚3 ⋅  𝑑𝑑𝑑𝑑𝑑𝑑; 𝛼𝛼 − 
coefficient of heat output; λ −  coefficient of thermal conductivity; b −  disk 
thickness; сpT −  ambient temperature. 

Using substitution  𝑇𝑇(𝑀𝑀, 𝜕𝜕) = 𝜃𝜃(𝑀𝑀, 𝜕𝜕) exp �−𝜔𝜔𝜌𝜌
2𝑎𝑎
𝜕𝜕 − 𝜔𝜔2

4𝑎𝑎
𝜕𝜕� 

The boundary problem (1) - (3) is reduced to the form: 
𝜕𝜕𝑡𝑡𝜃𝜃(𝑀𝑀, 𝜕𝜕) = 𝑎𝑎(𝜕𝜕𝑟𝑟2 + 𝜕𝜕−1𝜕𝜕𝜌𝜌 + 𝜕𝜕−2𝜕𝜕𝜑𝜑2)𝜃𝜃(𝑀𝑀, 𝜕𝜕) − 2𝛼𝛼∗

𝜌𝜌𝜌𝜌𝜌𝜌
(𝜃𝜃(𝑀𝑀, 𝜕𝜕) − 𝑇𝑇𝜌𝜌𝑏𝑏),𝑀𝑀 = 𝑀𝑀(𝜕𝜕,𝜕𝜕) (4)  

𝜃𝜃(𝑀𝑀, 𝜕𝜕)|𝑡𝑡=0 = 𝜃𝜃0 



𝜆𝜆𝜕𝜕𝜌𝜌𝜃𝜃(𝑀𝑀, 𝜕𝜕)�
𝜌𝜌=𝑅𝑅

= −𝛼𝛼(𝜃𝜃(𝑀𝑀, 𝜕𝜕)|𝜌𝜌=𝑅𝑅 − 𝑇𝑇𝜌𝜌𝑐𝑐),𝜕𝜕 ∉ [𝜕𝜕1,𝜕𝜕2] 

𝜕𝜕𝜌𝜌𝜃𝜃(𝑀𝑀, 𝜕𝜕)�
𝜌𝜌=𝑅𝑅

= 𝑓𝑓(𝜕𝜕, 𝜕𝜕),𝑓𝑓(𝜕𝜕, 𝜕𝜕) = 𝑞𝑞(𝜑𝜑)
𝜆𝜆
𝜕𝜕𝜌𝜌 exp �−𝜔𝜔𝜌𝜌

2𝑎𝑎
𝜕𝜕 − 𝜔𝜔2

4𝑎𝑎
𝜕𝜕� ,𝜕𝜕 ∈ [𝜕𝜕1,𝜕𝜕2] (5) 

In order to avoid the application of the Laplace transform and the difficulties with 
its treatment, we proceed as follows. We divide the time interval T into M  intervals 
of length ℎ = 𝑇𝑇𝑀𝑀−1and replace the time derivative by the difference relation 

𝜕𝜕𝑡𝑡𝜃𝜃(𝜌𝜌,𝜕𝜕, 𝜕𝜕) =
𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) − 𝜃𝜃𝑗𝑗−1(𝜌𝜌,𝜕𝜕)

ℎ , 𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) = 𝜃𝜃(𝜌𝜌,𝜕𝜕, 𝑗𝑗ℎ), 𝑗𝑗 = 1,2, … 
then 

�𝜕𝜕𝑟𝑟2 + 𝜕𝜕−1𝜕𝜕𝜌𝜌 + 𝜕𝜕−2𝜕𝜕𝜑𝜑2�𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) − 𝜇𝜇2𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) = 𝐹𝐹𝑗𝑗(𝜌𝜌,𝜕𝜕) (6) 
𝜃𝜃0(𝜌𝜌,𝜕𝜕) = 𝜃𝜃0 

𝜆𝜆𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕)�
𝜌𝜌=𝑅𝑅

= −𝛼𝛼(𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕)�
𝜌𝜌=𝑅𝑅 − 𝑇𝑇𝜌𝜌𝑐𝑐),𝜕𝜕 ∉ [𝜕𝜕1,𝜕𝜕2] 

𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕)�
𝜌𝜌=𝑅𝑅

= 𝑓𝑓𝑗𝑗(𝜕𝜕),𝑓𝑓𝑗𝑗(𝜕𝜕) = 𝑞𝑞(𝜑𝜑)
𝜆𝜆
𝜕𝜕𝜌𝜌 exp �−𝜔𝜔𝜌𝜌

2𝑎𝑎
𝜕𝜕 − 𝜔𝜔2

4𝑎𝑎
𝑗𝑗ℎ� ,𝜕𝜕 ∈ [𝜕𝜕1,𝜕𝜕2]      (7) 

where 
𝜇𝜇2 =

2𝛼𝛼∗
𝜌𝜌𝑐𝑐𝜌𝜌𝑎𝑎 +

1
𝑎𝑎ℎ ,𝐹𝐹𝑗𝑗(𝜌𝜌,𝜕𝜕) = 𝑇𝑇𝜌𝜌𝑏𝑏 − (𝑎𝑎ℎ)−1𝜃𝜃𝑗𝑗−1(𝜌𝜌,𝜕𝜕) 

Let us construct a discontinuous solution [16] of the heat equation for an 
unbounded plane 0≤ρ <∞, | φ | <π containing a circular defect occupying the region r 
= R, -π≤φ≤π, upon transition through which they suffer discontinuities of continuity 
of the first kind, the temperature 𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) and the heat flux 𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) with given 
jumps. 

𝜃𝜃𝑗𝑗(𝑅𝑅 + 0,𝜕𝜕) − 𝜃𝜃(𝑅𝑅 − 0,𝜕𝜕) = 〈𝜃𝜃𝑗𝑗(𝑅𝑅,𝜕𝜕)〉
𝜕𝜕𝜌𝜌𝜃𝜃(𝑅𝑅 + 0,𝜕𝜕) − 𝜕𝜕𝜌𝜌𝜃𝜃(𝑅𝑅 − 0,𝜕𝜕) = 〈𝜕𝜕𝜃𝜃𝑗𝑗(𝑅𝑅,𝜕𝜕)〉 (8) 

those, a solution that satisfies the heat equation everywhere except for defect points. 
At these points, jumps in temperature and heat flux are set. 

To construct a discontinuous solution of equation (6) with jumps (8), we apply the 
finite Fourier transform in the variable φ: 
 
  
𝜃𝜃𝑗𝑗 (𝜕𝜕,𝜕𝜕) = � 𝜃𝜃𝑗𝑗,𝑛𝑛(𝜌𝜌)𝑑𝑑−𝑖𝑖𝑛𝑛𝜑𝜑

∞

𝑛𝑛=−∞
, 𝜃𝜃𝑗𝑗,𝑛𝑛(𝜌𝜌) = 𝛷𝛷𝑛𝑛�𝜃𝜃𝑗𝑗 � ≡

1
2𝜋𝜋
� 𝜃𝜃𝑗𝑗 (𝜕𝜕,𝜕𝜕)𝑑𝑑𝑖𝑖𝑛𝑛𝜑𝜑𝑑𝑑𝜕𝜕
𝜋𝜋

−𝜋𝜋
, j = 1,2, … 

and, Hankel transform, according to a generalized scheme [16]: 

𝜃𝜃𝑛𝑛,𝛼𝛼
𝑗𝑗 = � 𝜌𝜌𝜃𝜃𝑗𝑗,𝑛𝑛(𝜌𝜌)𝐽𝐽𝑛𝑛(𝛼𝛼𝜌𝜌)𝑑𝑑𝜌𝜌

∞

0

= �� +�
∞

𝑅𝑅+0
� 𝜌𝜌𝜃𝜃𝑗𝑗,𝑛𝑛(𝜌𝜌)𝐽𝐽𝑛𝑛(𝛼𝛼𝜌𝜌)𝑑𝑑𝜌𝜌

𝑅𝑅−0

0
 

where ( )nJ z −  Bessel function. 
As a result, we obtain: 

𝜃𝜃𝑛𝑛,𝛼𝛼
𝑗𝑗 =

𝑅𝑅
𝛼𝛼2 + 𝜇𝜇2 {𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)〈𝜕𝜕𝜃𝜃𝑛𝑛

𝑗𝑗(𝑅𝑅)〉 − 〈𝜃𝜃𝑛𝑛
𝑗𝑗(𝑅𝑅)〉𝜕𝜕𝑅𝑅𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)} +

𝐹𝐹𝑛𝑛,𝛼𝛼
𝑗𝑗

𝛼𝛼2 + 𝜇𝜇2 

Where 𝐹𝐹𝑛𝑛,𝛼𝛼
𝑗𝑗 = � 𝜌𝜌𝐹𝐹𝑗𝑗,𝑛𝑛(𝜌𝜌)𝐽𝐽𝑛𝑛(𝛼𝛼𝜌𝜌)𝑑𝑑𝜌𝜌

∞

0
,𝐹𝐹𝑗𝑗,𝑛𝑛 = 𝛷𝛷𝑛𝑛�𝐹𝐹𝑗𝑗 � 

After reversing the Hankel transform, the required discontinuous solution of the 
heat equation in Fourier transforms can be written as: 

𝜃𝜃𝑗𝑗,𝑛𝑛(𝜌𝜌) = 𝑅𝑅{〈𝜕𝜕𝜃𝜃𝑗𝑗,𝑛𝑛(𝑅𝑅)〉𝐺𝐺𝑛𝑛(𝜌𝜌,𝑅𝑅) − 〈𝜃𝜃𝑗𝑗 ,𝑛𝑛(𝑅𝑅)〉𝜕𝜕𝜌𝜌𝐺𝐺𝑛𝑛(𝜌𝜌,𝑅𝑅)} + 𝐹𝐹𝑗𝑗,𝑛𝑛,

𝐺𝐺𝑛𝑛(𝜕𝜕,𝑅𝑅) = �
𝛼𝛼𝐽𝐽𝑛𝑛(𝛼𝛼𝜌𝜌)𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)

𝛼𝛼2 + 𝜇𝜇2 𝑑𝑑𝛼𝛼
∞

0
,𝐹𝐹𝑗𝑗,𝑛𝑛(𝜌𝜌) = �

𝛼𝛼𝐽𝐽𝑛𝑛(𝛼𝛼𝜌𝜌)𝐹𝐹𝑛𝑛,𝛼𝛼
𝑗𝑗

𝛼𝛼2 + 𝜇𝜇2 𝑑𝑑𝛼𝛼
∞

0

 
 
 
(9) 

Taking into account that: 



{〈𝜃𝜃𝑛𝑛,𝜆𝜆
𝑗𝑗 (𝑅𝑅)〉, 〈𝜕𝜕𝜃𝜃𝑛𝑛,𝜆𝜆

𝑗𝑗 (𝑅𝑅)〉} ≡
1

2𝜋𝜋 �{〈𝜃𝜃𝑗𝑗 ,𝑛𝑛(𝑅𝑅,𝜓𝜓)〉, 〈𝜕𝜕𝜃𝜃𝑗𝑗,𝑛𝑛(𝑅𝑅,𝜓𝜓)〉}𝑑𝑑−𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝜓𝜓
𝜋𝜋

−𝜋𝜋

, 

We write the discontinuous solution (9) in the form: 

𝜃𝜃𝑛𝑛,𝜆𝜆
𝑗𝑗 (𝜕𝜕,𝜕𝜕) =

𝑅𝑅
2𝜋𝜋 { �𝜒𝜒𝑗𝑗

1,−(𝜓𝜓)𝐺𝐺𝑛𝑛(𝜌𝜌,𝑅𝑅)𝑑𝑑−𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝜓𝜓
𝜋𝜋

−𝜋𝜋

− �𝜒𝜒𝑗𝑗2−(𝜓𝜓)𝜕𝜕𝜌𝜌𝐺𝐺𝑛𝑛(𝜌𝜌,𝑅𝑅)𝑑𝑑−𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝜓𝜓
𝜋𝜋

−𝜋𝜋

} + 𝐹𝐹𝑗𝑗,𝑛𝑛(𝜌𝜌),

𝜒𝜒𝑗𝑗1−(𝜓𝜓) = 〈𝜃𝜃𝑗𝑗,𝑛𝑛(𝑅𝑅,𝜓𝜓)〉,𝜒𝜒𝑗𝑗
2,−(𝜓𝜓) = 〈𝜕𝜕𝜃𝜃𝑗𝑗,𝑛𝑛(𝑅𝑅,𝜓𝜓)〉

 

Using the inverse finite Fourier transform formula, by ϕ  , and the addition 
theorem [16]. 

� 𝐽𝐽𝑛𝑛(𝛼𝛼𝜕𝜕)𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖
∞

𝑛𝑛=−∞

= 𝐽𝐽0(𝛼𝛼, 𝜕𝜕∗),𝜕𝜕∗2 = 𝜕𝜕2 + 𝑅𝑅2 − 2𝜕𝜕𝑅𝑅cos𝜙𝜙 

we obtain 

𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) =
𝑅𝑅

2𝜋𝜋 {� 𝜒𝜒𝑗𝑗
2,−(𝜓𝜓)Κ(𝜌𝜌,𝑅𝑅,𝜕𝜕 −𝜓𝜓)𝑑𝑑𝜓𝜓

𝜋𝜋

−𝜋𝜋
− 𝜕𝜕𝜌𝜌 � 𝜒𝜒𝑗𝑗

1,−(𝜓𝜓)Κ(𝜌𝜌,𝑅𝑅,𝜕𝜕 −𝜓𝜓)𝑑𝑑𝜓𝜓
𝜋𝜋

−𝜋𝜋
}

+ 𝐹𝐹𝑗𝑗 (𝜌𝜌,𝜕𝜕), 

𝐾𝐾(𝜌𝜌,𝑅𝑅,𝜙𝜙) = � 𝐺𝐺𝑛𝑛 (𝜕𝜕,𝑅𝑅)𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖
∞

𝑛𝑛=−∞

= �
𝛼𝛼

𝛼𝛼2 + 𝜇𝜇2 � 𝐽𝐽𝑛𝑛(𝛼𝛼𝜕𝜕)𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝛼𝛼
∞

𝑛𝑛=−∞

∞

0

= �
𝛼𝛼𝐽𝐽0(𝛼𝛼, 𝜕𝜕∗)
𝛼𝛼2 + 𝜇𝜇2 𝑑𝑑𝛼𝛼

∞

0
 

If we use the formula 6.532 (17) from [3], we obtain 

Κ(𝜕𝜕,𝑅𝑅,𝜙𝜙) = �
𝛼𝛼𝐽𝐽0(𝛼𝛼, 𝜕𝜕∗)
𝛼𝛼2 + 𝜇𝜇2 𝑑𝑑𝛼𝛼

∞

0

= 𝐾𝐾0(𝜕𝜕∗μ) 

Then: 
𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) = 𝑅𝑅

2𝜋𝜋
{∫ 𝜒𝜒𝑗𝑗

2,−(𝜓𝜓)𝐾𝐾0(𝜕𝜕∗μ)𝑑𝑑𝜓𝜓𝜋𝜋
−𝜋𝜋 − 𝜕𝜕𝜌𝜌 ∫ 𝜒𝜒𝑗𝑗

1,−(𝜓𝜓)𝐾𝐾0(𝜕𝜕∗μ)𝑑𝑑𝜓𝜓𝜋𝜋
−𝜋𝜋 } + 𝐹𝐹𝑗𝑗 (𝜌𝜌,𝜕𝜕),(10) 

We illustrate the technique of using discontinuous solutions to solve the boundary 
value problem. This technique is based on the idea that the boundary of the disk ρ = 
R be considered a defect. We consider the third boundary value problem: 

𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜕𝜕) + 𝜅𝜅𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜕𝜕) = 𝑓𝑓𝑗𝑗(𝜕𝜕) (11) 
Given that outside the domain specified in the conditions of the problem, the 

solution is identical to zero, i.e. at𝜌𝜌 > 𝑅𝑅, 𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) ≡ 0, и(𝜃𝜃𝑗𝑗(𝑅𝑅 + 0,𝜕𝜕) = 𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝑅𝑅 +
0,𝜕𝜕) = 0), then on the basis of (11), we can write the following: 

𝜒𝜒𝑗𝑗
2,−(𝜕𝜕) = 〈𝜕𝜕𝜌𝜌𝜃𝜃𝑗𝑗(𝑅𝑅,𝜕𝜕)〉 = −𝜅𝜅−1 �𝑓𝑓𝑗𝑗(𝜕𝜕) − 𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜕𝜕)� , 𝜅𝜅 = 𝜆𝜆 𝛼𝛼⁄  (12) 

As a solution to the boundary value problem (6), (12), we will use the 
discontinuous solution (10) with the jumps obtained here: 
𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) = 𝑅𝑅

2𝜋𝜋
{∫

𝑓𝑓𝑗𝑗(𝑖𝑖)−𝜃𝜃𝑗𝑗(𝑅𝑅−0,𝑖𝑖)
𝜅𝜅

𝐾𝐾0(𝜕𝜕∗μ)𝑑𝑑𝜕𝜕𝜋𝜋
−𝜋𝜋 − 𝜕𝜕𝜌𝜌 ∫ 𝜒𝜒𝑗𝑗

1,−(𝜓𝜓)𝐾𝐾0(𝜕𝜕∗μ)𝑑𝑑𝜓𝜓𝜋𝜋
−𝜋𝜋 } + 𝐹𝐹𝑗𝑗 (𝜌𝜌,𝜕𝜕),

           (13) 
To get an equation to determine an unknown boundary value: 
𝜒𝜒𝑗𝑗
1,−(𝜓𝜓) = 𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜓𝜓,), make the limit transition in (13) 𝜌𝜌 →  𝑅𝑅 − 0, considering 

that: 
lim
𝜌𝜌→𝑅𝑅

𝐾𝐾0(𝜇𝜇�𝜌𝜌2 + 𝑅𝑅2 − 2𝜌𝜌𝑅𝑅cos(𝜕𝜕 − 𝜓𝜓)) = 𝐾𝐾0(𝜇𝜇21 2⁄ 𝑅𝑅�1 − cos(𝜕𝜕 − 𝜓𝜓))

= 𝐾𝐾0(𝜇𝜇2𝑅𝑅|sin((𝜕𝜕 − 𝜓𝜓) 2⁄ )|) 



And that sin((𝜕𝜕 − 𝜓𝜓) 2⁄ ) ≈ (𝜕𝜕 − 𝜓𝜓) 2⁄ , at 𝜕𝜕 → 𝜓𝜓, as well as representing the 
MacDonald function as: 

 𝐾𝐾0(𝑧𝑧) = ln(2 𝑧𝑧⁄ ) + ln(2 𝑧𝑧⁄ ) + ∑ �𝑧𝑧
2
�
𝑚𝑚 1
Γ(𝑚𝑚+1)𝑚𝑚!

∞
𝑚𝑚=0 + ∑ �𝑧𝑧

2
�
2𝑚𝑚 𝑖𝑖(𝑚𝑚+1)

(𝑚𝑚!)2
∞
𝑚𝑚=0  

We can say that: 

�𝜕𝜕𝜌𝜌 � 𝜒𝜒𝑗𝑗
1,−(𝜓𝜓)𝐾𝐾0(𝜕𝜕∗μ)𝑑𝑑𝜓𝜓

𝜋𝜋

−𝜋𝜋
�
𝜌𝜌=𝑅𝑅±0

= ±
𝑣𝑣𝜒𝜒𝑗𝑗

1,−(𝜕𝜕)
2 ; 𝑣𝑣 = −1 − 𝛾𝛾 2⁄  

where 𝛾𝛾 − Euler constant. 
As a result, we obtain: 

𝜃𝜃𝑗𝑗(𝜌𝜌,𝜕𝜕) = −
𝑅𝑅

2𝜋𝜋 {�
𝑓𝑓𝑗𝑗(𝜓𝜓)− 𝜒𝜒𝑗𝑗

1,−(𝜓𝜓)
𝜅𝜅 𝐾𝐾0(μ|sin((𝜕𝜕 −𝜓𝜓) 2⁄ )|)𝑑𝑑𝜓𝜓

𝜋𝜋

−𝜋𝜋
+
𝑣𝑣𝜒𝜒𝑗𝑗

1,−(𝜕𝜕)
2 } + 𝐹𝐹𝑗𝑗 (𝑅𝑅,𝜕𝜕), 

This relation can be written as an integral equation: 

𝜒𝜒𝑗𝑗
1,−(𝜕𝜕) +

𝑅𝑅
2𝜋𝜋�

𝑓𝑓𝑗𝑗(𝜓𝜓)− 𝜒𝜒𝑗𝑗
1,−(𝜓𝜓)

𝜅𝜅(𝑣𝑣 − 2) 𝐾𝐾0(μ(|sin((𝜕𝜕− 𝜓𝜓) 2⁄ )|))𝑑𝑑𝜓𝜓
𝜋𝜋

−𝜋𝜋
= 𝐹𝐹𝑗𝑗 (𝑅𝑅,𝜕𝜕), 

Using the MacDonald function representation, in the form: 

𝐾𝐾0(μ(|sin((𝜕𝜕− 𝜓𝜓) 2⁄ )|)) = �
𝛼𝛼

𝛼𝛼2 + 𝜇𝜇2 � 𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)𝐽𝐽𝑛𝑛(𝛼𝛼𝑅𝑅)𝑑𝑑𝑖𝑖𝑛𝑛(𝜑𝜑−𝑖𝑖)𝑑𝑑𝛼𝛼,
∞

𝑛𝑛=−∞

∞

0
 

we apply the finite Fourier transform to this equation, taking into account its properties 
and the convolution theorem: 

𝛷𝛷𝑛𝑛�𝜕𝜕𝜑𝜑𝑘𝑘𝑓𝑓� = (𝑖𝑖𝑖𝑖)𝑘𝑘𝛷𝛷𝑛𝑛[𝑓𝑓], 𝛷𝛷𝑛𝑛[𝑓𝑓] = � 𝑓𝑓(𝜍𝜍)ℎ(𝜕𝜕 − 𝜍𝜍)𝑑𝑑𝜍𝜍
𝜋𝜋

−𝜋𝜋
= 2𝜋𝜋𝑓𝑓𝑛𝑛ℎ𝑛𝑛 ,𝛷𝛷𝑛𝑛[𝑑𝑑𝑖𝑖𝑚𝑚𝜑𝜑]

=
1

2𝜋𝜋
� 𝑑𝑑𝑖𝑖𝜑𝜑(𝑚𝑚−𝑛𝑛)𝑑𝑑𝜕𝜕
𝜋𝜋

−𝜋𝜋
= 𝛿𝛿𝑚𝑚,𝑛𝑛 

We obtain: 

𝜒𝜒𝑗𝑗.𝑛𝑛
1,− = 𝜏𝜏𝑛𝑛−1[𝐹𝐹𝑗𝑗,𝑛𝑛 − 𝑓𝑓𝑗𝑗 ,𝑛𝑛],𝜏𝜏𝑛𝑛 = 1 −

𝑅𝑅
𝜅𝜅(𝑣𝑣 − 2)ℎ𝑛𝑛 

ℎ𝑛𝑛 = �
𝛼𝛼

𝛼𝛼2 + 𝜇𝜇2 � 𝐽𝐽𝑚𝑚(𝛼𝛼𝑅𝑅)𝐽𝐽𝑚𝑚(𝛼𝛼𝑅𝑅)� 𝑑𝑑𝑖𝑖(𝑚𝑚−𝑛𝑛)𝑖𝑖
𝜋𝜋

−𝜋𝜋
𝑑𝑑𝜙𝜙,

∞

𝑚𝑚=−∞

∞

0
= �

𝛼𝛼[𝐽𝐽𝑚𝑚(𝛼𝛼𝑅𝑅)]2

𝛼𝛼2 + 𝜇𝜇2
∞

0
= 

𝑓𝑓𝑗𝑗,𝑛𝑛 = � 𝑓𝑓𝑗𝑗(𝜓𝜓)𝑑𝑑−𝑖𝑖𝑛𝑛𝜑𝜑𝑑𝑑𝜕𝜕
𝜋𝜋

−𝜋𝜋
,𝐹𝐹𝑗𝑗,𝑛𝑛 = � 𝐹𝐹𝑗𝑗 (𝑅𝑅,𝜕𝜕), 𝑑𝑑−𝑖𝑖𝑛𝑛𝜑𝜑𝑑𝑑𝜕𝜕

𝜋𝜋

−𝜋𝜋
 

Inverting the Fourier transform, we obtain 

𝜒𝜒𝑗𝑗.𝑛𝑛
1,−(𝜕𝜕) = 𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜕𝜕) = � (𝐹𝐹𝑗𝑗 (𝜂𝜂) − 𝑓𝑓𝑗𝑗(𝜂𝜂)) �

𝑑𝑑−𝑖𝑖𝑛𝑛(𝜑𝜑−𝜂𝜂)

𝜏𝜏𝑛𝑛

∞

𝑛𝑛=−∞

𝑑𝑑𝜂𝜂
𝜋𝜋

−𝜋𝜋
 (14) 

We introduce the unknown function ψ (φ), then the boundary conditions (7) are 
written as follows: 

𝜃𝜃(+𝑅𝑅,𝜕𝜕, 𝜕𝜕) + 𝜅𝜅𝜃𝜃′(+𝑅𝑅,𝜕𝜕, 𝜕𝜕) = 𝑑𝑑−(𝜕𝜕) +𝜓𝜓+(𝜕𝜕),
𝑑𝑑−(𝜕𝜕) = 0, |𝜕𝜕| ∈ (𝜕𝜕1,𝜕𝜕2),𝑑𝑑−(𝜕𝜕) = 𝑑𝑑(𝜕𝜕), |𝜕𝜕| ∉ (𝜕𝜕1,𝜕𝜕2)
𝜓𝜓+(𝜕𝜕) = 𝜓𝜓(𝜕𝜕), |𝜕𝜕| ∈ (𝜕𝜕1,𝜕𝜕2),𝜓𝜓+(𝜕𝜕) = 0, |𝜕𝜕| ∉ (𝜕𝜕1,𝜕𝜕2)

 
 
 
(15) 

If we assume that the functions g_(φ) and ψ (φ) are known, then we pass to the third 
main boundary-value problem, the solution of which was obtained above. Using 
formula (14), we can write the following. 



𝜃𝜃𝑗𝑗(𝑅𝑅 − 0,𝜕𝜕) = − ��𝑑𝑑−(𝜂𝜂) +𝜓𝜓+(𝜂𝜂)�Ψ(𝜕𝜕− 𝜂𝜂)𝑑𝑑𝜂𝜂
𝜋𝜋

−𝜋𝜋

+ �𝐹𝐹𝑗𝑗(𝜂𝜂)Ψ(𝜕𝜕 − 𝜂𝜂)𝑑𝑑𝜂𝜂
𝜋𝜋

−𝜋𝜋

,

Ψ(𝜕𝜕 − 𝜂𝜂) = �
𝑑𝑑−𝑖𝑖𝑛𝑛(𝜑𝜑−𝜂𝜂)

𝜏𝜏𝑛𝑛

∞

𝑛𝑛=−∞

𝑑𝑑𝜂𝜂

 

Now satisfying the first boundary condition from (7) and taking into account (15) 
we obtain the integral equation: 

𝜕𝜕
𝜕𝜕𝜕𝜕 � 𝜓𝜓𝑗𝑗(𝜂𝜂)Ψ(𝜕𝜕 − 𝜂𝜂)𝑑𝑑𝜂𝜂

𝜑𝜑2

𝜑𝜑1

= 𝐹𝐹(𝜕𝜕),

𝐹𝐹(𝜕𝜕) = �𝐹𝐹𝑗𝑗 (𝜂𝜂)Ψ(𝜕𝜕 − 𝜂𝜂)𝑑𝑑𝜂𝜂
𝜋𝜋

−𝜋𝜋

−
𝜕𝜕
𝜕𝜕𝜕𝜕�� +�

𝜋𝜋

𝜑𝜑2

𝜑𝜑1

−𝜋𝜋
�𝑑𝑑(𝜂𝜂)𝛹𝛹(𝜕𝜕 − 𝜂𝜂)𝑑𝑑𝜂𝜂

 

In fig. Figures 2–4 show plots of temperature changes depending on the polar 
angle φ and radius ρ and various values of the temperature of the boundary layer Tbl; 
moreover, Figures 2 show plots at an angular velocity of ω = 50 m⁄c, and in Fig. 3 at 
ω = 80 m⁄c. The temperature of the boundary layer was varied using the Ranque-Hills 
tube. The temperature was determined at an operating time of 60 s. 

 
                              a)                                                                  b) 

Figure 2.a) The temperature of the circle at the temperature of the boundary layer + 
200 ° C; b) the temperature of the circle at the temperature of the boundary layer –500 
°C. V circle = 50 m /s. 



 

                              a)                                                                  b) 

Figure 3 a) The temperature of the circle at the temperature of the boundary layer + 
20° C; b) the temperature of the circle at the temperature of the boundary layer -50° 
C. Vwheel = 80 m / s 

Additional mathematical modeling of the process of introducing the boundary layer 
of atomized coolant (fog) showed that the temperature of the disk decreases 
significantly, as shown in Fig. 4. 

 
                              a)                                                                  b) 

Figure 4 a) Circle temperature when sprayed coolant is introduced into the boundary 
layer (fog) .Vwheel = 50 m / s; Circle temperature when sprayed coolant (fog) is 
introduced into the boundary layer. Vwheel = 80 m / s. 

2 Conclusions. 

Contact heat transfer between the circle and the boundary layer is not effective enough 
to reduce the temperature of the disk 

When air with a negative temperature is introduced into the boundary layer by 
means of a Ranque-Hillsch tube, the disk temperature decreases by about 10%. 



A slight decrease in temperature during contact heat transfer between the cutting 
disc and the boundary layer is explained by a low coefficient of thermal conductivity 
of air. When a sprayed coolant is introduced into the boundary layer using an ejector 
tube (fog cooling), the disk temperature decreases by 25%, which ensures an increase 
in the time of continuous operation. 

3 Results 

As a result of the study, it was found that to increase the time of continuous operation 
of the disk, cooling of the boundary layer must be carried out using an ejector tube. 
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