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I. INTRODUCTION  

This Deep learning (DL) models have shown considerable promise in the medical field, particularly for the detection and 
classification of diseases such as COVID-19. However, the deployment of these models in real-world settings is often hindered 
by their high computational and memory requirements. To address this challenge, model pruning techniques, which reduce the 
size and complexity of neural networks by removing less important parameters, have been increasingly explored [2]. This paper 
investigates the application of magnitude-based pruning to a Deep Learning classification model for COVID-19 detection, as 
defined in a recent IEEE study. 

The  model [ 7], which leverage limited labelled data to improve performance, have demonstrated significant potential in 
medical image analysis [4]. In our study, we initially trained a weakly supervised learning model for the binary classification of 
COVID-19 cases, achieving a validation accuracy of 87%. To further enhance the model's efficiency and performance, we applied 
magnitude-based pruning, a technique that prunes weights with the smallest magnitudes, assuming they have less impact on the 
model's predictions [3]. 

We employed a Polynomial Decay pruning schedule to gradually increase the model's sparsity from 0% to 50% over 50 
epochs. This dynamic adjustment allowed the model to adapt smoothly to the pruning process. After pruning, the model was fine-
tuned, resulting in a significant improvement in validation accuracy to 95%. 

Our study demonstrates the effectiveness of magnitude-based pruning in optimizing DL models for medical applications. By 

reducing model complexity while enhancing performance, magnitude-based pruning offers a practical solution for deploying 

efficient and accurate COVID-19 detection models in in resource-constrained environments. 

The remainder of the manuscript is organized as follows: Section II discusses related work found in the literature. Section 

III discusses the datasets and methods used to implement classification of the COVID-19, Magnitude based pruning . Section 

IV provides discussion on the results obtained, and Section V concludes the study with a discussion on the merits and limitations 

of the proposed approach and future work directions. 

II. LITERATURE SURVEY 

Deep Learning for Medical Imaging  

Deep learning (DL) has revolutionized medical imaging by enabling automated and accurate analysis of medical images. 
Convolutional neural networks (CNNs), a class of DL models, have been particularly successful in tasks such as disease detection, 
segmentation, and classification. Notably, CNNs have been employed in the detection of various diseases from chest X-ray 
images, including pneumonia, tuberculosis[5], and more recently, COVID-19 from chest X-ray and lung CT[6]. However, the 
deployment of these models in real-world clinical settings is often limited by their high computational and memory demands. 

Weakly Supervised Learning in Medical Imaging 

Weakly supervised learning, which leverages limited labelled data to train models, has gained traction in medical image analysis 

due to the scarcity and high cost of annotated medical data. Different papers has explained  different weakly supervised methods 

for the classification of Localization of Common Thorax Diseases[7], infection detection and classification COVID-19 [8]] using 

weakly supervised learning and could achieved significant performance limited labelled data. This approach has shown promise 

in reducing the need for extensive annotation, making it more feasible for practical applications in medical imaging. 

 COVID-19 Detection Using DL Models 

The COVID-19 pandemic has prompted extensive research into developing DL models for rapid and accurate detection of the 

virus from medical images. CNNs have been successfully employed to detect COVID-19 from chest X-rays and CT scans, 

achieving high accuracy and offering a valuable tool for aiding diagnosis [11]. However, the large size and complexity of these 

models present challenges for deployment in clinical settings, where computational resources may be limited. 

Model Pruning Techniques 

Model pruning is a widely used technique to reduce the size and complexity of DL models by removing redundant or less 
important weights and neurons. Pruning can be broadly categorized into structured and unstructured pruning. Structured pruning 
removes entire neurons or filters, whereas unstructured pruning removes individual weights. Detailed survey are found [9] on 
different pruning methods. Among the various pruning techniques, magnitude-based pruning has been extensively studied and 
applied due to its simplicity and effectiveness [10]. 

Magnitude-Based Pruning 

Magnitude-based pruning zeroes out weights with the smallest magnitudes, under the assumption that these weights have less 

impact on the model's performance. This approach has been effective in significantly reducing model size without substantial 

loss in accuracy. [10] demonstrated that magnitude-based pruning could reduce the number of parameters in a CNN by up to 

90% while maintaining its performance on tasks such as image classification. The technique involves iterative pruning and fine-

tuning, which allows the model to adapt to the reduced set of weights. 

Pruning Schedules 

Pruning schedules are essential to the pruning process as they determine how sparsity is introduced into the model over time. 

Polynomial decay schedules, which gradually increase the sparsity level during training, have been shown to be effective in 
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allowing the model to adapt smoothly to pruning [12]. This gradual approach helps maintain model stability and performance 

throughout the pruning process. 

By systematically reviewing these areas, this literature survey provides a comprehensive overview of the state-of-the-art 

techniques and their applications in the context of DL models for medical imaging and model pruning, setting the stage for the 

contributions of this study. 

Contribution of This Study 

Building on the existing research, this study applies magnitude-based pruning to a weakly supervised learning model for the 

binary classification of COVID-19 cases. By leveraging the Polynomial Decay pruning schedule, we aim to optimize the model 

for efficiency and performance. Our results demonstrate that pruning can enhance the model's accuracy from 87% to 95% while 

significantly reducing its size, highlighting the potential of this approach for practical deployment in resource-constrained 

environments. 

III. MATERIALS AND METHOD  

A. Data Collection and Preprocessing 
The dataset referenced in this study is sourced from Kaggle [13]. It comprises CT images of 20 patients, including both 

COVID-19 positive and negative cases, in nii format. The CT scans cover both the left and right lungs, and they are labelled by 
radiologists and verified by experts. The dataset is organized into four folders: ct_scans/: Contains lung CT 
scans,infection_mask/: Includes infection masks for each CT slice. Masks are black for COVID-19 negative cases, lung_mask/: 
Contains lung masks for each CT scan, created manually by radiologists, lung_and_infection_mask/: Features images with lung 
masks superimposed on infection masks. The metadata.csv file provides the file paths for all files in these four directories.  
The dataset contains a total of 3520 lung CT slices. Some slices lacked infection masks and were removed as part of the data 
cleaning process. Consequently, the number of CT slices after preprocessing is 2106. 

The CLAHE (Contrast Limited Adaptive Histogram Equalization) [14] enhancement technique is applied to all images to enhance 
contrast and improve image quality. Additionally, the lung mask in the dataset is used to crop and obtain the region of interest 
(ROI) of each lung CT. This step focuses on the desired portion of the lung CT rather than processing the entire CT slice, thereby 
improving processing speed. SMOTE (Synthetic Minority Oversampling Technique) [16] method is also employed to overcome 
from data imbalance problem with dataset. 

The entire dataset is split into a training set (70%) and a testing set (30%) for classification. Data Augmentation is employed 
since training dataset containing only 2106 CT slices and masks. To add more CT slices and increase the size of our dataset, data 
augmentation is performed on the :such as the left-right flip and up-down flip of the original images and original masks. The 
training process involves 50 epochs, and the Adam (Adaptive Moment Estimation) optimizer is used to update the model 
parameters along with advanced Cosine Annealing method to choose appropriate learning rate during the training process [15].  

B. Model Definition and Training 

Base Model: The DL classification model defined in the IEEE paper [7] is implemented for binary classification of COVID-19 

cases and trained on a labeled dataset containing lung CT images. The model is trained for 50 epochs with Adam optimizer and 

Leaky ReLU is an activation function, and achieved validation accuracy of 87%.  

Pruning pipeline steps used in this work is as showed in Figure 1. The Steps in the process are:1) The model defined is jointly 

pruned and trained on the given dataset using Magnitude-based pruning to reduce the model size by zeroing out weights with the 

smallest magnitudes. Pruning Schedule: A Polynomial Decay [12] schedule was used to dynamically adjust the sparsity from 0% 

to 50% over 50 epochs. The threshold is determined by sorting the absolute values of the weights and finding the value below 

which the target percentage of weights falls. Tensor Flow Model Optimization Toolkit: Handles the pruning process using a 

defined pruning schedule, updating masks during training, and stripping pruning wrappers after training. Weights below the 

threshold are masked (set to zero), and the pruning mask is updated accordingly. This approach ensures that less important 

weights are pruned, reducing the model size 3) Pruned model is saved for further processing. 4)load pruned model, fine tune the 

model from scratch  using same learning rate, batch size 32 with RMSProp as optimizer with learning rate 0.0001at the start and  

updated using cosine Annearling schedule. 

 

  
Figure 1: Pruning pipelining employed [9] 

The model is then trained to restore and potentially enhance performance resulting in training Accuracy of 0.90, testing 

Accuracy of 0.92 and Overall Accuracy 0.91.  

Confusion matrix in Figure 2 shows the performance of the model before and after training and testing dataset. The analysis of 

the bar graph plotted in the Figure 3 and Figure 4 is as shown below: 
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Figure 2: confusion Matrix analysis before and after pruning   

 

 

Figure 3: Comparison of performance metrics before and after pruning  

 

Impact of Pruning on Training Performance: Accuracy, Precision, and F1 Score dropped significantly after pruning. The drop 

in Accuracy and Precision suggests that while the pruned model captures more true positives, it may also misclassify more 



negative cases. Recall, however, increased slightly from 0.97 to 0.99, indicating that the pruned model became more sensitive 

in identifying positive cases.  

Impact of Pruning on Testing Performance: Accuracy and Precision decreased but not as drastically as in the training set. Also 

Recall remained high (0.99) even after pruning, similar to the training results. The F1 Score dropped slightly from 0.96 to 0.92, 

which shows a trade-off between Precision and Recall. 

 

Figure 4: Comparison of performance of individual metric before and after pruning  

 We further analyzed each performance metric individually in details and its impact on the learning process of the model.   

Accuracy: As per the bar graph showed in Figure 3, before pruning accuracy on the training dataset is 0.98 and testing dataset it 

is 0.97 which is high enough as compare to the training accuracy after pruning 0.90 and testing is 0.92. Reduction in the accuracy 

after pruning indicated that classification ability of the model is reduced due to removal of certain network parameters.   

Precision: Value of the precision before pruning on training dataset was 0.98 and testing it was 0.97 and after pruning there is 

significant drop of 0.83 on Training and 0.86 on testing dataset. As a result pruned model produces more false positives, making 

it less confident in its positive predictions. 

Recall: Before pruning recall metrics has value 0.97 on Training and 0.96 on testing dataset whereas after pruning recall value 

improved to 0.99 on both training and testing dataset. The increase in recall suggests that the pruned model is better at 

capturing true positive cases, even at the cost of lower precision. This is particularly useful for applications where missing a 

positive case (e.g., a disease diagnosis) is costly. 

F1 Score: Before pruning: 0.98 in Training and 0.96 Testing. Reading after pruning: 0.91 for Training and 0.92 Testing. The 

F1 Score drop reflects the trade-off between precision and recall, indicating that while recall remains strong, the overall 

balance of the model’s predictions is slightly affected. 

Table 1 demonstrate comparison study of the model size and total number of parameters before and after pruning DL model.  

 

  Table 1: Comparison of DL model size and parameters before and after pruning  

It was observed that total number of parameters decreased by 49.94%, reducing the overall model size from 29.96 MB to 15.00 

MB. This indicates an efficient pruning strategy that significantly reduces storage requirements. Also the number of trainable 

parameters remains 3,928,458 and non-trainable parameters dropped from 3,925,996 to 2,944, a 99.92% reduction. This means 

pruning mainly affected non-trainable layers such as e.g., Batch Norm layers, biases, or frozen layers and hence the core learning 

capacity of the model is preserved. 

 



IV. RESULT AND DISCUSSION  

This paper implemented a classification model for the detection of COVID-19 to achieve a good accuracy of 98% in the training 

dataset and 97% of accuracy on the testing dataset before pruning. Overall Accuracy of the model before pruning 0.975 (97.5%). 

Implemented model then applied for the pruning using magnitude based pruning method aiming to reduce the size of the model 

without affecting its performance. After pruning result obtained is: Training Accuracy: 0.90, Testing Accuracy: 0.92 and Overall 

Accuracy 0.91 (91.0%).   

After pruning, Recall improves, making the pruned model more sensitive to detecting positive cases. The Overall performance 

says that, the pruned model generalizes well, as seen from the similar accuracy levels in both training and testing after pruning. 

But as we know Pruning reduces model size and complexity but leads to a decrease in accuracy and precision. More fine-tuning 

e.g., using regularization or fine-pruning may help recover some of the lost precision while maintaining high recall.  As showed 

in the Figure 2, the pruned and fine-tuned model has achieved validation accuracy of 95%.   Pruning led to a reduction in overall 

model performance, especially in Precision, meaning the model is making more false positive predictions.   However, since 

Recall remains high, the pruned model is still effective at identifying positive cases.   The pruned model generalizes well, as 

the testing accuracy (0.92) is close to training accuracy (0.90), indicating no major overfitting.  

With regard to the model size and parameters the model became nearly 50% smaller, making it more efficient for deployment 

while maintaining its learnable weights. Reduced non-trainable parameters indicate effective optimization, possibly improving 

inference speed. To further optimize pruned DL model, methods like quantization and fine-tuning can be employed. 

  

V. CONCLUSION  

 

This study explored impact of magnitude-based pruning on base model [7] which is a deep learning model for the binary 

classification of COVID-19 cases.. The pruned model, fine-tuned over 50 epochs, the findings demonstrate that even though 

there is an accuracy drop from 97.5% to 91.0% after pruning, the pruned model remains effective, especially since recall 

improved. The performance trade-off due to pruning, which helps reduce model complexity but slightly impacts its classification 

accuracy. Potential Trade-off demonstrated that the model may experience a slight accuracy drop due to parameter reduction, 

requiring fine-tuning. 

By demonstrating the practical benefits of magnitude-based pruning, this study contributes to the ongoing efforts to develop 

efficient and accurate DL models for medical diagnostics, particularly in the context of the global pandemic. Significant reduced 

in the size of the model help to run model faster than the original model. 

 

A. Limitations 

Despite the promising results, several limitations of this study should be acknowledged: 

Dataset Dependency: The model was trained and evaluated on the COVID-19 dataset modified for binary classification. The 

generalizability of the results to other datasets and real-world clinical data remains to be validated. 

Model Architecture Specificity: The pruning techniques and schedules applied were tailored to the specific architecture of the 

weakly supervised learning model. Different architectures might require customized pruning strategies and may respond 

differently to pruning. 

Structured pruning, which removes entire neurons or filters, could be more beneficial for certain hardware accelerators. 

Initial Performance Drop: The initial application of pruning led to a performance drop, which was mitigated through fine-tuning. 

However, this initial degradation could be problematic in scenarios where interim model performance is critical. 

Computational Overhead: The process of evaluating and pruning weights introduces additional computational overhead during 

training, which could extend the training time, particularly for larger models and datasets. 

 

B. Future Recommendations 

To address these limitations and further enhance the applicability of magnitude-based pruning, the following recommendations 

are proposed: 

To improve accuracy after pruning, consider the following techniques: Fine-Tuning [17] the Pruned Model helps the remaining 

parameters, adjust and improve performance e.g. Reduce learning rate (e.g., lr=0.0001) and retrain the model for a few more 

epochs, Use Early Stopping to prevent overfitting while fine-tuning. Adding a small dropout [18] (e.g., 0.2-0.3) and data 

augmentation [19] can improve generalization. Instead of pruning a fixed percentage, structured pruning is better method to 

remove less important filters while keeping critical ones. Also try dynamic pruning [20], where less important neurons are 

removed during training rather than all at once. 
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