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Abstract

P versus NP is considered as one of the most important open prob-
lems in computer science. This consists in knowing the answer of the
following question: Is P equal to NP? It was essentially mentioned in
1955 from a letter written by John Nash to the United States National
Security Agency. However, a precise statement of the P versus NP
problem was introduced independently by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity classes are L and NL. Whether
L = NL is another fundamental question that it is as important as
it is unresolved. We prove that NP ⊆ NSPACE(log2 n) just using
1L-reductions.

2020 MSC: MSC 68Q15, MSC 68Q17

Keywords: Computational Algorithm, Complexity Classes, Complete-
ness, Polynomial Time, Reduction, Logarithmic Space

1 Introduction

In 1936, Turing developed his theoretical computational model [10]. The
deterministic and nondeterministic Turing machines have become in two of
the most important definitions related to this theoretical model for compu-
tation [10]. A deterministic Turing machine has only one next action for
each step defined in its program or transition function [10]. A nondetermin-
istic Turing machine could contain more than one action defined for each
step of its program, where this one is no longer a function, but a relation
[10].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the
set of finite strings over Σ [2]. A Turing machine M has an associated input
alphabet Σ [2]. For each string w in Σ∗ there is a computation associated
with M on input w [2]. We say that M accepts w if this computation
terminates in the accepting state, that is M(w) = “yes” [2]. Note that, M
fails to accept w either if this computation ends in the rejecting state, that is
M(w) = “no”, or if the computation fails to terminate, or the computation
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ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [2].

Another relevant advance in the last century has been the definition
of a complexity class. A language over an alphabet is any set of strings
made up of symbols from that alphabet [4]. A complexity class is a set of
problems, which are represented as a language, grouped by measures such
as the running time, memory, etc [4]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ :M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) =
“no” [4]. We denote by tM (w) the number of steps in the computation of
M on input w [2]. For n ∈ N we denote by TM (n) the worst case run time
of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs
in polynomial time if there is a constant k such that for all n, TM (n) ≤ nk+k
[2]. In other words, this means the language L(M) can be decided by the
Turing machine M in polynomial time. Therefore, P is the complexity
class of languages that can be decided by deterministic Turing machines in
polynomial time [4]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w :M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a
polynomial time verifier runs in polynomial time in the length of w [2]. A
verifier uses additional information, represented by the string u, to verify
that a string w is a member of L1. This information is called certificate.
NP is the complexity class of languages defined by polynomial time verifiers
[8].

It is fully expected that P ̸= NP [8]. Indeed, if P = NP then there are
stunning practical consequences [8]. For that reason, P = NP is considered
as a very unlikely event [8]. Certainly, P versus NP is one of the greatest
open problems in science and a correct solution for this incognita will have a
great impact not only in computer science, but for many other fields as well
[3]. Whether P = NP or not is still a controversial and unsolved problem
[1]. We provide an important step forward for this outstanding problem
using the logarithmic space complexity.

1.1 The Hypothesis

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial
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time with just f(w) on its tape [10]. Let {0, 1}∗ be the infinite set of binary
strings, we say that a language L1 ⊆ {0, 1}∗ is polynomial time reducible
to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a polynomial time
computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. If L1 is a language such
that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard [4]. Moreover,
if L1 ∈ NP , then L1 ∈ NP–complete [4]. A principal NP–complete problem
is SAT [5]. An instance of SAT is a Boolean formula ϕ which is composed
of:

1. Boolean variables: x1, x2, . . . , xn;

2. Boolean connectives: Any Boolean function with one or two inputs
and one output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication),
⇔(if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the
variables in ϕ. A satisfying truth assignment is a truth assignment that
causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth
assignment is satisfiable. The problem SAT asks whether a given Boolean
formula is satisfiable [5]. We define a CNF Boolean formula using the
following terms:

A literal in a Boolean formula is an occurrence of a variable or its nega-
tion [4]. A Boolean formula is in conjunctive normal form, or CNF , if it
is expressed as an AND of clauses, each of which is the OR of one or more
literals [4]. A Boolean formula is in 3-conjunctive normal form or 3CNF , if
each clause has exactly three distinct literals [4]. For example, the Boolean
formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which
contains the three literals x1, ⇁ x1, and ⇁ x2.

A logarithmic space Turing machine has a read-only input tape, a write-
only output tape, and read/write work tapes [10]. The work tapes may
contain at most O(log n) symbols [10]. In computational complexity theory,
L is the complexity class containing those decision problems that can be
decided by a deterministic logarithmic space Turing machine [8]. NL is the
complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [8].
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In general,DSPACE(S(n)) andNSPACE(S(n)) are complexity classes
that are used to measure the amount of space used by a Turing machine
to decide a language, where S(n) is a space-constructible function that
maps the input size n to a non-negative integer [9]. The complexity class
DSPACE(S(n)) is the set of languages that can be decided by a deter-
ministic Turing machine that uses O(S(n)) space [9]. The complexity class
NSPACE(S(n)) is the set of languages that can be decided by a nondeter-
ministic Turing machine that uses O(S(n)) space [9].

A function f : Σ∗ → Σ∗ is a logarithmic space computable function
if some deterministic Turing machine M , on every input w, halts using
logarithmic space in its work tapes with just f(w) on its output tape [10].
Let {0, 1}∗ be the infinite set of binary strings, we say that a language
L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗,
written L1 ≤l L2, if there is a logarithmic space computable function f :
{0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the completeness of the com-
plexity classes L, NL and P among others.

The two-way Turing machines may move their head on the input tape
into two-way (left and right directions) while the one-way Turing machines
are not allowed to move the input head on the input tape to the left [6].
Hartmanis and Mahaney have investigated the classes 1L and 1NL of lan-
guages recognizable by deterministic one-way logarithmic space Turing ma-
chine and nondeterministic one-way logarithmic space Turing machine, re-
spectively [6]. They have shown that 1L ̸= 1NL (by looking at a uniform
variant of the string non-equality problem from communication complexity
theory) and have defined a natural complete problem for 1NL under deter-
ministic one-way logarithmic space reductions [6]. Furthermore, they have
proven that 1NL ⊆ L if and only if L = NL [6].

We can give a certificate-based definition for NL [2]. The certificate-
based definition of NL assumes that a logarithmic space Turing machine
has another separated read-only tape, that is called “read-once”, where the
head never moves to the left on that special tape [2].

Definition 1.1. A language L1 is in NL if there exists a deterministic
logarithmic space Turing machine M with an additional special read-once
input tape polynomial p : N→ N such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M , x is placed on its in-
put tape, the certificate string u is placed on its special read-once tape, and
M uses at most O(log |x|) space on its read/write tapes for every input x
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where | . . . | is the bit-length function. The Turing machine M is called a
logarithmic space verifier.

An oracle Turing Machine M has an additional tape, the oracle tape,
and three states q?, qyes and qno [7]. When M enters q? (M is said to query
the oracle), then M goes to the state qyes or the state qno according to
whether the string written in the oracle tape belongs or does not belong
to a set called the oracle [7]. A language accepted by an oracle Turing
Machine M with oracle A is denoted by LA(M) [7]. The class of languages
accepted by deterministic and nondeterministic oracle Turing Machine M
working in space S(n), with oracle A, is denoted by DSPACEA(S(n)) and
NSPACEA(S(n)), respectively [7]. We state the following Hypothesis:

Hypothesis 1.2. There is a nonempty language L2 ∈ 1L, such that there
is another language L3 which is closed under logarithm space reductions
in NP–complete with a deterministic square logarithmic space Turing
machine M using an additional special read-once input tape polynomial
p : N→ N, where:

L3 = {w :M(w, u) = y, ∃u ∈ {0, 1}p(|w|) such that y ∈ L2}

when by M(w, u) we denote the computation of M , w is placed on its input
tape, and the certificate string u is placed on the special read-once tape of
M . In this way, there is a NP–complete language defined by a square
logarithmic space verifier M such that when the input is an element of the
language, then there exists a certificate u such that M outputs a string which
belongs to a single language in 1L.

We show the principal consequences of this Hypothesis:

Theorem 1.3. If the Hypothesis 1.2 is true, then NP ⊆ NSPACE(log2 n).

Proof. We can simulate the computationM(w, u) = y in the Hypothesis 1.2
by a nondeterministic square logarithmic space oracle Turing machine
N such that the string y is written in the oracle tape in the computation
of N(w), since we can read the certificate string u within the read-once
tape by a work tape in a nondeterministic logarithmic space generation of
symbols contained in u [8]. Certainly, we can simulate the reading of one
symbol from the string u into the read-once tape just nondeterministically
generating the same symbol in the work tapes using a logarithmic space [8].
We could remove each symbol or a logarithmic amount of symbols generated
in the work tapes, when we try to generate the next symbol contiguous to
the right on the string u. In this way, the generation will always be in
logarithmic space. This proves that L3 is in NSPACE(log2 n)1L since the
string y written in the oracle tape is queried whether y ∈ L2 or not. That is
equivalent to say that L3 is in NSPACE(log2 n) when the Hypothesis 1.2
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is true, since NSPACE(log2 n)1L = NSPACE(log2 n) as a consequence of
that NSPACE(log2 n) is closed under 1L–reductions [7]. Due to L3 is closed
under logarithm space reductions in NP–complete, then everyNP problem is
logarithmic space reduced to L3. This implies thatNP ⊆ NSPACE(log2 n)
since NSPACE(log2 n) is closed under logarithm space reductions as well.

1.2 The Problems

Now, we define the problems that we are going to use.

Definition 1.4. ONE-IN-THREE 3-TIMES 3SAT (3T-3SAT)
INSTANCE: A Boolean formula ϕ in CNF such that each variable ap-

pears exactly thrice with two positive and one negated literal occurrences.
QUESTION: Is there a truth assignment such that each clause has at

least one true literal?
REMARKS: Every single certificate must contain all the variables of ϕ

and if we eliminate one single variable from that truth assignment, then this
stops of being a certificate for the instance.

Definition 1.5. 1SUM
INSTANCE: An unary string 0K and a collection B of positive integers

such that every element in B has the same bit-length | K | where | . . . |
means the bit-length function.

QUESTION: Is the sum of all elements of the collection B equal to K?

2 Results

Theorem 2.1. 3T-3SAT ∈ NP–complete.

Proof. Consider the problem ONE-IN-THREE 3SAT with no negated liter-
als. That is almost 3T-3SAT but the instances in ONE-IN-THREE 3SAT
are Boolean formulas in 3CNF . We know that ONE-IN-THREE 3SAT ∈
NP–complete [5]. Consider an instance ψ of ONE-IN-THREE 3SAT in
which the variable x appears k times. So, we replace the first occurrence of x
by x1, the second by x2 and so on, where x1, x2, . . . , xk are k new variables.
Next, we add the expression

(⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . . ∧ (⇁ xk ∨ x1)

which is equivalent to
x1 ⇒ x2 ⇒ . . .⇒ x1.

Note that, each clause above has fewer than 3 literals. The final result
satisfies the condition on the selected variable x. Suppose we are given in ψ
the expression

. . . (u ∨ v ∨ x) . . . ∧ . . . (x ∨ y ∨ z) . . .
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and therefore, the transformed expression into another Boolean formula ϕ
would be

. . . (u ∨ v ∨ x1) . . . ∧ . . . (x2 ∨ y ∨ z) . . . ∧ . . . (⇁ x1 ∨ x2) ∧ (⇁ x2 ∨ x3) ∧ . . .

where the variable x2 appears exactly thrice since x2 appears twice and
⇁ x2 appears once. Consider an instance ψ of ONE-IN-THREE 3SAT in
which the variable x appears once. In this case, we add the another new
clause (x∨ ⇁ x) into ϕ. In this way, the variable x appears exactly thrice
since x appears twice and ⇁ x appears once. Hence, we proceed with this
subroutine for each variable in ψ from ONE-IN-THREE 3SAT to finally
obtain the equivalent instance ϕ in 3T-3SAT.

Theorem 2.2. 1SUM ∈ 1L.

Proof. Given an collection of positive integers B, we can read its elements
from left to right, check that every element in B has the same bit-length
| K |, sum them one by one into a single value and compare whether this
calculated value is equal to K. We can make all this computation in a
deterministic one-way using logarithmic space. Certainly, we can count and
store the number of bits of each element of the collection that we read from
the input and check whether they are all equal to the unique bit-length | K |.
Indeed, we never need to read to the left on the input for the acceptance of
the elements in 1SUM in a deterministic logarithmic space.

Theorem 2.3. There is a deterministic square logarithmic space Turing
machine M , where:

3T-3SAT = {w :M(w, u) = y,∃u such that y ∈ 1SUM}

when by M(w, u) we denote the computation of M , w is placed on its input
tape, u is placed on the special read-once tape of M , and u is polynomially
bounded by w.

Proof. The input could be a Boolean formula ϕ in CNF such that each
variable appears exactly thrice with two positive and one negated literal oc-
currences. The Boolean formula ϕ contain n variables andm clauses. We can
create a certificate array A which contains indexes values that represents the
position of exactly one literal per clause. We read at once the indexes values
of the array A and we reject when this index is out of range in relation to the
clause in the ith position. Besides, we check that the array contains exactly
m element: one index per clause. While we read the indexes values of the ar-
ray A using every position i, we check those constraints in A and output the
number that represent the positive literals concatenated ⌈log2 n⌉ times its
binary representation (the function R(x, y) concatenates the binary string x
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Algorithm 1 Square logarithmic space verifier with output

1: /*A valid instance for 3T-3SAT with its certificate*/
2: procedure VERIFIER(ϕ, A)
3: /*Initialize the number of variables*/
4: n← number–of–variables(ϕ)
5: /*Output the value of 0K*/
6: output 02·

∑n
i=1 R(i,⌈log2 n⌉)

7: /*Initialize the number of clauses*/
8: m← number–of–clauses(ϕ)
9: /*Output the open square bracket of collection B*/

10: output , [
11: /*Iterate for the elements of the certificate array A*/
12: for i ← 1 to m do
13: /*Assign the current index*/
14: j ← A[i]
15: if j = null then
16: return “no”
17: else if j > number–of–literals(ci) ∨ j < 1 then
18: return “no”
19: else if i = m ∧A[i+ 1] ̸= null then
20: return “no”
21: else if ci[j] < 0 then
22: /*We fill it by zeroes until the bit-length of K*/
23: output fill–by–zeroes(2 ·R(−ci[j], ⌈log2 n⌉))
24: else
25: /*We fill it by zeroes until the bit-length of K*/
26: output fill–by–zeroes(R(ci[j], ⌈log2 n⌉))
27: end if
28: if i < m then
29: output ,
30: else
31: /*Output the close square bracket of collection B*/
32: output ]
33: end if
34: end for
35: end procedure
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just y times) and the absolute value for negated literals concatenated ⌈log2 n⌉
times its binary representation with another 0 bit behind (which means the
concatenation result is multiplied by 2) just assuming the literals are defined
as integer according to the DIMACS files representation as input (http:
//www.satcompetition.org/2009/format-benchmarks2009.html).

By Theorems 2.1 and 2.2, we obtain that for all:

ϕ ∈ 3T-3SAT⇔ ∃A such that (0K , B) ∈ 1SUM

with K = 2 ·
∑n

i=1R(i, ⌈log2 n⌉) such that when (0K , B) ∈ 1SUM, then we
guarantee do not output the positive and negated literal of a single variable,
we indeed do output all variables and output always one single value for
each clause. To sum up, we can create this verifier that only uses a square
logarithmic space in the work tapes such that the array A is placed on
the special read-once tape, because we read at once the indexes values in
the array A. Hence, we only need to iterate from the cells of the array A
to verify whether the array is an appropriated certificate according to the
described constraints and check that every index j is correct.

This square logarithmic space verifier with output will be the Algo-
rithm 1. We introduce some constraints in the Algorithm 1 in order to
guarantee the algorithmic procedure. For example, we assume that a value
does not exist in the array A into a cell of some position i when A[i] = null.
In addition, we immediately reject when the mentioned comparisons between
the indexes values j and the size of the clause do not hold at least into one
single binary digit. That means the machine enters into the rejecting state
when the certificate is not valid. Remember that, we assume the variables
are between 1 and n due to the DIMACS files representation as input.

Theorem 2.4. NP ⊆ NSPACE(log2 n).

Proof. This is a directed consequence of Theorems 1.3 and 2.3 because of
the Hypothesis 1.2 is true. Certainly, 3T-3SAT is closed under logarithm
space reductions in NP–complete. Indeed, we can reduced SAT to 3T-3SAT
in logarithmic space and every NP problem could be logarithmic space
reduced to SAT by the Cook’s Theorem Algorithm [5].

3 Conclusions

The significance of NP being a subset of NSPACE(log2 n) would be im-
mense, as it would imply that all problems in NP can be solved using a
poly-logarithmic amount of space. This would have important implications
for the study of complexity theory and the development of algorithms for
practical applications. This would have important implications for a wide
range of fields, including computer science, mathematics, physics, and engi-
neering.
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