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Abstract—The insufficient communication between mentors
and students has been one of the main disadvantages of
modern programming learning platforms. In this paper, we
propose the development of a web-based intelligent tutoring
system with a question-answering (QA) system to provide live
interaction between students and a mentor figure. We propose
the implementation of an alternative QA system using a large
language model (LLM) and a retrieval-augmented generation
(RAG) mechanism. We utilized the LangChain library and
integrated the RAG mechanism with the history-aware
retriever and direct integration into the web application. We
performed internal and external evaluations in the form of
qualitative evaluation via subjective scoring towards answers
from various quantized LLMs in both single-turn and
multi-turn conversation scenarios. We conclude that the Llama
3 model displays consistent and promising results compared to
other models and that documents with a higher character
count may act as better knowledge bases for the RAG process.
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I. INTRODUCTION
There has been a significant increase in the needs of

digital talents in Indonesia in the past few years, especially
in the programming industry. However, this increase led to a
higher gap between the number of required talents and the
actual number of digital talents produced by formal
education [1]. There have been various attempts to minimize
this gap, including the development of education platforms
specializing in programming and tutorial websites providing
knowledge for software engineering. However, one major
weakness these solutions collectively possess was the
insufficient interaction between human mentors and
students, potentially leading to the loss of motivation in
students to inquire further questions. Another arising
problem is the contextuality of the inquired questions, where
the questions asked may be specific to the student’s
requirements.
An intelligent tutoring system (ITS), a learning system

developed with artificial intelligence-based features that
provides instructions and aid without human assistance [2],
may provide a solution to these problems. One example is
with the integration of a question-answering (QA) system
with an interactive interface into the learning process. An
interactive QA system enables students to inquire questions
and further provide context related to the question in a

chat-like manner to ensure a more natural interaction, along
with the timely response provided by the system [3].
The rapid uprising of LLMs provides an opportunity to

utilize LLMs as an alternative to conventional QA systems.
One outstanding method suitable for augmenting LLMs for
the QA system’s use case is the retrieval-augmented
generation (RAG) method, providing external knowledge
while maintaining flexibility towards unknown data without
having to fine-tune a LLM [4]. The prompt engineering
method may be used in tandem with RAG to provide further
context for the LLM and align the LLM output with the
users’ needs [5]. This paper focuses on developing a
pipeline combining LLMs with the RAG method, designed
as a QA system in the ITS application to respond to inquiry
questions.
We introduce a subjective method to evaluate answers

from LLMs in this research. We established several
qualitative metrics relevant to the answers a LLM may
provide in the usage as an interactive QA system, then
performed scoring with a Likert scale based on the
established metrics. Through this method, it is possible to
conduct comparisons between various LLMs based on their
answers by checking the fulfillment of several criteria. We
also performed a public evaluation to gather external
evaluation that may support our internal findings. The
introduced solution also utilizes the history-aware retriever
mechanism that enables query reformulation based on the
user’s chat history and current question, ensuring that the
retrieved documents are still relevant to those two aspects.

II. RELATED WORKS

The significant increase in LLM research and utilization
has led to various studies being performed in the specific
topic. This section introduces and discusses past research
and studies relevant to the development of the QA system in
this paper. Studies discussed will cover relevant
mechanisms that are related to the final implementation of
the QA system. This section will also discuss the existing
intelligent tutoring systems for students.

LLMs are a variant of LMs, probabilistic artificial
intelligence models based on natural language that produce
a series of probabilities of words that may show up to
complete a sequence [6]. These models have received major
attention and advancements over the past few years in the
generative AI field due to its ability to process long inputs
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and produce comprehensible, natural answers. LLMs are
based on the transformer architecture [7] to enable parallel
processing, allowing encoding-decoding processes in a
timely manner. Recently, LLMs have been considered to be
an alternative to interactive systems due to its ability to
provide human-like responses, and are progressing rapidly
with both proprietary companies and open-source
communities frequently releasing new models. One of the
more recent open-source models, Llama 3, has shown
competitive performance when compared to both
open-source and proprietary models [8].

There have been various existing ITS systems in the
programming domain; one notable example being the
CPP-Tutor system [9]. This system utilizes a knowledge
base of the C++ programming language and an expert intent
model to provide corrections and proper suggestions
towards the user’s code. This system provides a humanlike
interaction with the user; however, the interaction is focused
only on the use case of code correction. Our system is aimed
to provide a natural interaction with various use cases, not
limited to code correction.

Previous developments of a QA system with a retrieval
system have been carried out before using a retriever-reader
architecture [10]. The retriever mechanism is utilized to
obtain relevant documents by using the inquired question as
a query and comparing it to the document collection. The
reader mechanism would then find the relevant information
contained in the retrieved document. The TF-IDF vectorizer
is utilized to convert the documents and the query into the
embedding form. Relevant documents would then be
retrieved by computing the cosine similarity between the
embedding representation of a document and the query,
ranking the documents based on the cosine similarity, and
taking the top-ranked documents. Our research further
extends this study by utilizing RAG, which is
retriever-based and utilizes similarity search between
documents using transformer-based embedding models.

Studies regarding the potential of LLMs as an alternative
to existing QA systems have shown promising results [11].
On an experiment to compare LLMs with knowledge-based
QA (KBQA) systems on various open-ended QA datasets,
both the proprietary GPT-4 model by OpenAI and the
open-source FLAN-T5 model by Google have proven to be
on par with conventional fine-tuned state-of-the-art (SOTA)
KBQA, reaching similar or higher accuracy rate on six
datasets and better results by GPT-4 on multilingual
datasets. Our study extends the findings in this research by
integrating the RAG method with LLMs, further enhancing
LLM capabilities to answer domain-specific questions with
document retrieval and the ability to process long inputs.

There have been various studies related to the usage of
retriever mechanisms to overcome limitations of an LLM
[12]. A retriever mechanism provides LLMs access to
various resources otherwise unreachable, such as external
knowledge bases, persistent memory mediums, or tools such
as search engines. The RAG mechanism utilizes knowledge
retrievers to obtain knowledge outside of a LLM’s internal
knowledge to generate answers relevant to the knowledge
base. RAG eliminated the requirement to fine-tune a model
for a specific downstream task, and instead provided access
to external knowledge as a non-parametric memory [13].
One such example in a QA system is the chat history

between the user and the model, where previous chat history
may be relevant to the conversation. We utilized this
mechanism to retrieve external knowledge stored in a vector
database and chat history stored in a chat history database in
order to perform long-context modeling.

Qualitative evaluation regarding LLMs has also been
intensively researched for the past few years [14]. One
significant study involves utilizing a LLM as an external
judge to compare answers between two LLM agents.
Despite the LLM limitations, the study showed promising
results, with judgments by the LLM aligning with human
results. This study also introduced MT-bench, a suite to
evaluate LLMs on open-ended multi-turn conversations. We
took the inspiration from MT-bench and further developed a
small multi-turn conversation dataset comparison to assess
the system’s performance in multi-turn question-answering.

For evaluating answers for an interactive QA system in a
qualitative manner, various metrics must be established to
determine whether the answers provided by the system
fulfill the desired criteria. One study emphasizes two main
criteria; accuracy to evaluate whether the answers provided
by the system are factually correct, and usefulness to
measure whether the provided answers assist the user’s
needs and answer the user’s questions [15]. These key
metrics can reflect the key qualities of an answer provided
by a QA system and can be further developed and used for
further qualitative assessments. We extended these metrics
into several novel metrics that reflected the original metrics
and evaluated more crucial qualities in the answers.

III. DESIGN AND IMPLEMENTATION

This section discusses and explains the proposed
architecture of the developed QA system, alongside various
components and considered justifications. This section also
discusses various methods performed during the
implementation phase of the QA system.

A. Processing External Documents
The learning modules and knowledge were originally

written in Indonesian and were contained inside PDF files
for reading purposes. To enable the LLM to access the
information inside of these documents, we performed
several processing steps to convert the information into a
retrievable collection of documents. These steps are
visualized in Figure 1. Firstly, we extracted and translated
the information from each page inside the PDF files. We
translated the information in bulk using DeepL Translator
due to its capability in producing highly accurate
translations. The result was the translation of each PDF file
stored inside a text file, where each PDF file may contain
specific subtopics.

Fig. 1. The document processing steps
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The extracted text may contain duplicated or incomplete
text chunks. To maintain the data quality, we performed
manual annotation and text cleansing on the extracted and
translated texts. The result of this step was a structured
document that could be segmented into specific subtopics.
Document splitting was performed by splitting each
document into smaller documents, where each document
contains information about a specific subtopic. This is to
maintain the context of each document so that it would
ideally contain information about a specific subtopic that
may be asked later, so that the provided document includes
complete information about the inquired subtopic. We
established a specific chunk size and split a lengthy
document into smaller documents based on the chunk size.

B. Prompt Engineering
We used the CO-STAR prompting method because of its

ability to convey the rules and prompts required by a LLM
to produce an expected answer [16]. CO-STAR is an
acronym of each property that comprises it, with each
property defining the purpose of the agent. Table I shows
the pairing of each property in a CO-STAR prompt and the
description of its usage in the prompt.

TABLE I. PROPERTIES OF THE CO-STAR PROMPT

Property Usage
Context Define that the agent is a chatbot in a QA system inside a

learning platform.
Objective Provide answers based on the previous chat history and

retrieved documents. Do not answer malicious questions or
questions outside of the programming domain.

Style Be friendly and polite, provide analogies and examples
whenever possible.

Tone Follow a friendly and helpful tone.
Audience Beginners in programming, ranging from high schoolers to

university freshmen.
Response Provide at most eight sentences, excluding analogies and

examples.

C. Developing the Pipeline
We developed the pipeline using LangChain, a renowned

open-source library capable of integrating various tools and
databases for various applications utilizing LLMs. The
developed pipeline provided the LLM access towards an
external knowledge base and a persistent memory medium.
Users could interact with this system in a conversational
manner due to its ability to comprehend and utilize previous
chat history. The system is accessible inside each material
page on the website, each page containing a different chat
history to maintain the discussion in a specific page. Below
are the three main components interacting in the pipeline.

● Chat history database: We used Redis to maintain
the chat history information due to its efficient
caching mechanism, a key-value schema that is
sufficient for this use case, and its support for
persistent storage. The history of the chat is stored
using an unique identifier to differentiate history per
material page.

● Retriever: In LangChain, a retriever retrieves the
relevant documents contained in the vector database
based on the user query. A history-aware retriever
combines the capabilities of retrievers and those of
LLMs to construct a new query based on the

previous chat history to retrieve relevant documents
based on the current user question and the previous
chat history. This component is built-in into
LangChain’s functionalities and could be integrated
into the QA system.

● LLM: The LLM would generate the final answer by
streaming the answer to the website and generate a
new search query in the history-aware retriever. Due
to the limited resources available, we utilized
quantized LLMs running on a local environment.

The developed pipeline would be evaluated and
experimented upon to find the compatible LLM and
document size for the retrieval process. The evaluation
methods and results are to be discussed in Section 4 and 5 of
this study.

IV. EXPERIMENTS

This section discusses the experiment methods
conducted on the developed pipeline. The experiment
methods would involve comparison between various
quantized open-source LLMs and examination of the RAG
mechanism. Additionally, we conducted external research to
gather external opinions and to further support the internal
findings found in the experiment methods.

A. Data
We conducted the experiment on a RAG pipeline with

its own knowledge base. In order to ensure a relevant and
correct evaluation process with the knowledge base, we
developed our own datasets with consideration to the
knowledge base. We developed 55 single-turn questions and
10 multi-turn question groups, with each question group
containing 3-4 questions. These questions did not have a
paired answer, as the focus of the experiment was to
compare answers between various models and determine the
model with outstanding qualities that is suitable for the QA
system. To evaluate the retrieval process, we developed a
small document test collection by taking 14 questions from
the 55 single-turn questions and selecting the relevant
documents retrieved from using those questions as a query.

B. Models
In this experiment, we compared two types of models:

LLMs as the main focus of this experiment, and embedding
models to measure the model with the best performance on
the retrieval process. We picked 17 LLMs from the Ollama
model library, with most models having 7B parameters.
Each LLM is quantized to 4-bit weights to ensure
comparison fairness and efficient inference speeds. We
conducted initial qualitative screenings towards the initial
models to determine the best performing model for each
family. Table 2 describes the grouping of these models
based on their families. In the table, we discussed the reason
for the LLM family selection and the selected model,
marked by the bolded model name.

TABLE II. CATEGORIZATION OF LLM MODELS BASED ON MODEL
FAMILES

Family Reason of Selection Models
Llama2 Existed longer than other

models with various variants,
selected for benchmarking

CodeLlama-7B Instruct
Llama2-7B Chat
Vicuna-7B-16K
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Gemma Competitive results, providing
a more structured output and
guidance to users

Gemma-7B Base
Gemma-7B Instruct
CodeGemma-7B Base
CodeGemma-7B
Instruct

DeepSeek Exceptional performance in
coding and mathematics for an
open-source model

DeepSeek-Coder-6.7B
Base
DeepSeek-Coder-6.7B
Instruct

Mistral Impressive capability of
providing humanlike
interaction, suitable for
chatbots and assistants

Mistral-7B
Zephyr-7B
Notus-7B

Llama 3 The latest open-source model
(at the time of writing),
improved upon Llama2

Llama 3-8B

Qwen Promising results compared to
other models in its parameter
class

Qwen-1.5-7B Base
Qwen-1.5-7B Chat

Phi Smaller size compared to other
models, however capable of
providing similar results in
benchmarks

Phi-3B-Base
Phi-3-3.8B Base

There are no models chosen from the Qwen and Phi
families due to the significant quality degradation caused by
the quantization process. Two models, Zephyr and Notus,
are elected from the Mistral family due to the quality from
both models being on par during the initial screening, and
thus further comparison was required. Llama 3 only has one
model candidate due to it being a novel model during the
experiment, and thus included due to its consistency in
quality even when compared to other models.

For embedding models, we selected a few models to
compare based on the MTEB benchmark. Notable models
include:

● e5-large-v2: This model was used as a baseline model
due to it outperforming models with 40x its parameters
in the MTEB leaderboard. This model shows generally
favorable results for tasks requiring single vector
representations.

● jina-embeddings-v2-base-en: This embedding model
was specifically developed for long-context embedding
up to 8192 tokens, and is suitable for RAG tasks.

● gte-en-v1.5: This embedding model had undergone
contrastive pre-training with data from various sources.
This model managed to outperform other code
embedding models due to it treating code chunks as
general purpose text during the pretraining and
fine-tuning process.

C. Methods
We conducted internal experiments by performing

subjective scoring towards the answers provided by the
developed pipeline on single-turn and multi-turn questions.
Each elected model would be used in the developed pipeline
to answer the provided questions. For single-turn questions,
we would evaluate the answer provided by each model for
each question. For multi-turn questions, we would evaluate
the coherence of the conversation produced between the
questions provided by each question group and answers to
each question.

The evaluation metrics we used were derived from the
related study about chatbot benchmarking [15]. For each
metric, we performed the scoring using a Likert scale
ranging from 1 to 5. For each metric, the high score

resembles a better quality for the metric. Table III describes
the metrics we used during the evaluation.

TABLE III. QUALITATIVE METRICS FOR ANSWER EVALUATION

Metric Description
Friendliness Evaluates the style of answers provided and whether the

answer is understandable. A novel metric introduced in
this study.

Conciseness Evaluates whether the model provides a lengthy or a
concise explanation. Resembles the usefulness metric.

Helpfulness Evaluates whether the model successfully aids the user’s
requirements or whether the model provides necessary
analogies or examples that may further assist the user.
Resembles the usefulness metric.

Faithfulness Evaluates whether the model utilizes the retrieved
documents to generate answers. Resembles the accuracy
metric.

To evaluate the retrieval process, we used the mean
average precision (MAP) metric, commonly used to
evaluate document retrieval systems. This metric was
generally favorable for ranked retrieval evaluation due to
the ability to represent both precision and recall values in a
single number. This metric also considered the ranks of the
retrieved documents, producing a higher value when the
relevant documents are top-ranked and vice versa. We also
consider the memory usage of each model, considering the
limited resource that would be used to perform the
embedding.

Additionally, we conducted subjective evaluation with a
Likert scale similar to evaluation with the qualitative
metrics. The score would represent the contextuality and
relevance of the documents retrieved during the retrieval
process. We selected different chunk sizes to simulate
different document sizes during the retrieval. For each
chunk size, we scored the retrieval results and compared the
results between embedding models.

For external evaluation, we designed an online
questionnaire in order to enable respondents to provide their
own Likert scale scoring on single-turn questions. The
questionnaire would provide scoring results for the
friendliness, conciseness, and helpfulness metrics. The
faithfulness metric was not included due to its lengthy
comparison process involving comparison with retrieved
documents. Respondents would be able to rank the models
on each question based on their preferences and the quality
of each model’s score. The model names were
disambiguated to prevent bias towards a preferred model.
By the end of the questionnaire, respondents would provide
their opinions on which model suits the best as a QA
system.

V. RESULTS

This section discusses the results of the conducted
evaluation methods discussed in Section 4. For each
evaluation method, we provide the results, error analysis,
and conclusion from the evaluation method.

A. Evaluation towards Retrieval Results
Figure 2 visualizes the score accumulation for each

chunk size. For each chunk size, we compared the
embedding results for each candidate model. A lower score
represents a worse ranking or cut documents, while a higher
score represents a better ranking or documents with better
splitting processes. We can see that splitting the documents
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with the chunk size set to 1000 provided a higher score
compared to the chunk size set to 200 or 600. This is due to
the resulting document on chunk size 1000 having more
subtopic information stored inside of it, thus providing a
more holistic view towards a certain subtopic during the
scoring process.

Fig. 2. Subjective scoring results for the retrieval results

In terms of ranking, these models may not seem to
significantly vary in hindsight, so MAP calculations were
performed on the sample document collection to ensure fair
judgment towards the ranking results. Table IV shows the
difference between MAP and the memory usage between
each model.

TABLE IV. COMPARISON BETWEEN MAP SCORE AND MEMORY
USAGE PER EMBEDDING MODEL

Model MAP Score Memory
Usage200 600 1000

jina-embeddings-v2 0.7781 0.8191 0.8224 3270 MiB
e5-large-v2 0.7182 0.6856 0.6819 1370 MiB
gte-en-v1.5 0.6516 0.8294 0.7973 648 MiB

Both Jina and GTE models provided similar MAP
results on higher chunk sizes. However, the GTE model
used noticeably less memory compared to the Jina model.
Due to the limited resources available, the GTE model was
more favorable to use. It could be concluded that both Jina
and GTE models provided favorable results, and using a
higher chunk size would result in better retrieved documents
on RAG tasks.

B. Subjective Scoring towards Single-Turn Results

Fig. 3. Subjective scoring results for each qualitative
metric

Figure 3 visualizes the score accumulation for subjective
scoring for each qualitative metric. A lower score implies a
lower model’s answer quality on a specific metric, while a
higher score implies the metric being reflected better in the
model’s answer. Based on these results, it can be concluded
that Llama 3 consistently reaches the highest score on every
metric compared to other models. The preceding
CodeLlama model performed well on the conciseness
metric, however the model tends to display the retrieved
documents as-is without modification. The Notus and
Zephyr model performed well on the friendliness and
helpfulness metric, considerably because they are both
fine-tuned models for chatting purposes.

C. Subjective Scoring towards Multi-Turn Results
Table V displays the scoring results for multi-turn

results. Both Llama 3 and CodeGemma performed best with
a similar score, each model showing different strengths.
Llama 3 excelled in aiding the user with a friendly and
helpful manner, providing a friendlier experience with the
user. While being less friendly, CodeGemma tends to
provide elaboration and information to further emphasize
previous explanations with a concise manner. CodeLlama
and Zephyr also demonstrated a coherent multi-turn
conversation.

D. Questionnaire Results
We distributed the questionnaire to fourteen respondents.

The reason for the small number of respondents is due to the
high effort required to fill in the questionnaire, and thus we
prefer results with a higher consistency and quality over the
volume of results. The model names are disambiguated to
reduce bias towards selecting a specific model.

Fig. 4. Weighted sum of ranking scores

Figure 4 visualizes the accumulated ranking points for
all models, where each model receives a ranking placement
based on its quality on answering a particular question. For
each model, the score is calculated by assigning points
based on its ranking in different categories. Points are
awarded as follows: 6 points for a first-place position, 5
points for second position, 4 points for third position, and so
on, down to 1 point for a sixth-place position. The total
score for each model is the sum of points earned across all
categories.
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Fig. 5. Respondent voting on favorable models

Figure 5 visualizes the respondents’ voting on the most
favorable models. Most respondents favor the usage of
Llama 3 in the QA system, with a significant difference of
votes received compared to other models’ votes. Other
favored models from the voting results were DeepSeek,
Zephyr, and CodeGemma, whereas CodeLlama and Notus
were not generally favorable with lower voting results.

Based on the questionnaire results, it can be concluded
that Llama 3 is suitable for the usage in the QA system,
according to the results received from the questionnaire.
This supports the internal findings that also suggests that
Llama 3 fulfills the qualitative metrics desirable for an
interactive QA system. Therefore, we can conclude that
Llama 3 shows an overall consistent quality and is
preferable for the QA system we developed based on both
internal and external findings.

VI. CONCLUSION

We conclude that LLMs can be used as a promising
alternative of conventional KBQA models for an interactive
QA system in a learning environment, specifically in an
intelligent tutoring system. By utilizing the RAG
mechanism for knowledge retrieval and long-context
modeling, we successfully implement an interactive QA
system for answering user questions based on the learning
documents and the previous chat history. Our qualitative
result suggests that Llama 3 is an excellent model for a
friendly and helpful QA system, and that documents with a
higher chunk size and split based on knowledge topics
provide a more holistic view of knowledge for the RAG
mechanism and thus are more helpful.
We suggest developing more quantitative-based

approaches for future research and utilizing non-quantized
model weights to ensure a more fair comparison between
models. We also suggest exploring the impact and
significance of the QA system more with testing towards
end users. This is to further accentuate the significance of
the conducted research by testing it under the real-world
scenario.
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