
EasyChair Preprint
№ 15500

A Study to Investigate Software Failure Factors in
Libyan Organizations

Abdelhakim Rashid, Mohamed Hagal and Naser El-Firjani

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 29, 2024

A Study to Investigate Software Failure Factors in
Libyan Organizations

Abstract—Software has become very important in everyday

life. It is used in almost every field. Even in local society, the

dependency level on software has also increased. Whenever there

is a software failure, it might have severe consequences on society

and individuals alike. Failure does not only affect the client but

also the company that is responsible for the development. This

study aims to explore the issues that face users and investigate the

factors that cause software to fail. A questionnaire was built to

derive the issues that users face and distributed using an online

Google form across twelve organizations in Benghazi, Libya. In

addition, ten interviews were conducted with twenty developers

to identify the factors that cause failure. The most common

factors among interviewees were identified, including unrealistic

schedules and budgets, a lack of user involvement, and

incomplete requirements. Finally some recommendations were

provided to help engineers and development companies overcome

those issues and reduce the failure.

Keywords- Software engineering, Software failure factors, Software

quality

I. INTRODUCTION

Software is pervasive in modern societies. It is becoming
increasingly important in every aspect of daily life, almost in
every business domain like education, finance, communication,
and more. It is also responsible for safety-critical functionalities
such as medical, transportation, and nuclear energy fields. Even
in local society, the dependency level on software has also
increased since the emergence of COVID-19. Software is one
of the most economically challenging and yet one of the most
important technologies of this era. It is among the most
complicated and error-prone in human history.

Good software should be able to provide the end user with
the required functionalities and performance; it should also be
maintainable, dependable, and usable [1]. In order to develop
good software with the above-mentioned characteristics,
engineers and development companies need to follow software
engineering methods and techniques. The major challenges that
face software engineering are developing reliable software,
coping with increasing diversity, and demands for reduced
delivery times [1].

Since the beginning of programming and the emergence of
software engineering, a vast number of software systems have

been developed. Moreover, the capability, size, and complexity
of software systems have evolved tremendously over the years,
and software usage has expanded in many areas. Many of these
systems have failed due to various reasons, causing severe and
critical consequences. A study of airworthiness directives
indicated that thirteen out of thirty-three issued for the period
1984-1994, or 39%, were directly related to software issues.
Also, the medical field faces similar issues, as 79% of the
medical devices recalled can be attributed to software defects
[2].

In the last thirty years or so, software failures delayed the
opening of the hugely expensive Denver Airport for a year and
destroyed the National Aeronautics and Space Administration
(NASA) Mars mission. In the same period, failures wrecked a
European satellite launch, killed four marines in a helicopter
crash, shut down the ambulance system in London, which led
to thirty deaths, and induced a United States (U.S.) Nautical
Army Volunteer Yeomen (Navy) ship to destroy a civilian
airline [3].

Aside from the inconvenience and possible safety hazards
associated with software failures, there are huge economic
consequences as well. A 2002 research study by the National
Institute of Standards discovered that software failures cost the
American economy $59.5 billion annually. For the fiscal year
2003, approximately, the Department of Defense is estimated
to have spent $21 billion on software development. Upwards of
40% of the total, or $8 billion, were spent on software
reworking due to quality and reliability issues. In addition to
the previously mentioned enormous economic statistics, a
delay in the Denver airport's automated luggage system due to
software issues costs $1.1 million per day. A single automotive
software error led to a recall of 2.2 million automobiles and
expenses in excess of $20 million [2].

To better understand the financial and business effects of
software failures, Tricentis, which is a software-testing
company, studied and analysed 606 software failures from 314
companies. The study showed that in 2018, software failures
impacted 3.6 billion people and caused $1.7 trillion in financial
losses. In addition, the Consortium for Information and
Software Quality (CISQ) published a report in 2020 about the
cost of poor software quality. This report revealed that the total
cost of failed software projects among U.S. companies is an

Abdelhakim F. Rashid
School of Engineering and Technology

Libyan International University, Libya

abdelhakim.rashid@limu.edu.ly

Mohamed A. HAGAL

Faculty of Information Technology

University of Benghazi, Libya

Mohamed.hagal@uob.edu.ly

Naser F. M. EL-Firjani
Faculty of Information Technology

University of Benghazi, Libya

naser.elfirjani@uob.edu.ly

estimated $260 billion, while the total cost of operational
failures caused by poor quality software is an estimated $1.56
trillion [4].

It could be stated that all of what has been mentioned above
clearly demonstrates the possible consequences that may result
from software failures, where many of these failure cases have
resulted from the incorrect use of software engineering
methods.

In general, "failure" is any deviation from the expected
results. Software failure is defined by IEEE as "the inability of
a system or component to perform its required functions within
specified performance requirements" [5]. Failure causes the
software to produce an incorrect or unexpected result, or to
behave unexpectedly.

Software failure can lead to different degrees of harm to
organizations or individuals, which include but are not limited
to degradation in performance to end users, resulting in losses
to the business, causing damage to the company’s reputation,
and sometimes resulting in the loss of human lives. Therefore,
it is useful to understand the software failure, analyse it and
determine what causes it to fail.

The rest of the paper is organized as follows: Section II
discusses and reviews related work. Section III describes the
phases of the methodology. Section IV presents the results and
Section V concludes the paper.

II. RELATED WORK

Several studies have been conducted on software and
software failures to identify the reasons or factors that cause the
software to fail. Some of these studies focused on failures
during the development phase. These studies presented some
factors that contributed to the failure during this phase, where
these factors can have a significant impact on the operational
phase. On the other hand, some research studies have
concentrated on software failure during the operational phase
and identified the factors and issues that cause failure during
this phase, which is extremely important due to the critical
consequences that result from the failure and the increasing
dependency level of societies on software. Therefore, this
section discusses and reviews some previous studies related to
the failure.

The research study in [6] defined unsatisfactory project
outcomes and stated that projects involve several classes of
participants or stakeholders, including customers, developers,
users, and maintainers. Each class has different but highly
important satisfaction criteria. In addition, the researcher stated
that "unsatisfactory outcome" is multi-dimensional. Schedule
and budget overruns are unsatisfactory for customers and
developers. Products with incorrect functionality, user interface
shortfalls, low performance, or poor reliability are
unsatisfactory for users. The poor software quality is
unsatisfactory for maintainers. Based on a survey of several
professional project managers, this study identified the top ten
primary risks as sources of software failure. These are
personnel shortfalls, unrealistic schedules and budgets,
developing the wrong properties and functions, designing the
wrong user interface, continuous streaming of requirements

changes, gold plating, shortfalls in externally developed
components, performance shortfalls, shortfalls in externally
performed tasks, and straining computer science capabilities.

The factors identified in [7] were responsible for the
failures during the development phase. Based on the related
literature, this study extracted that the five major factors that
contribute to the failure are related to the project managers,
customers, and other stakeholders, technology, process, and the
project team. Questionnaires and personal interviews with
project managers were used in this study to collect data. The
researchers used a Structural Equation Model to analyse the
gathered data and discovered that the project's internal factors
have a greater effect than external factors. Internal factors, such
as the project manager and the project team, have a great effect
on the project's failure. In particular, the project manager plays
a vital role in deciding which development process and
technology to use. On the other hand, in external factors,
customers play a very important role in the failure of the
project. Customers primarily affect the final project
deliverables by "requirements definition" and "change of
requirements". In particular, a clear expression of the demands
of the project from the customer is vital to the success of the
project. This study did not identify the failure factors but only
presented a classification of the failure factors.

In [8], the researchers revisited the failure factors linked to
certain governments' information and communication
technologies (ICT) projects. This study analysed the failure
factors in Malaysian government agencies and compared them
to the previous studies. Based on literature review and
interviews, the result of this research contributed to the
identification of twenty-one failure factors that affected the
Malaysian government's ICT projects, among them: a lack of
user involvement, a lack of a project plan, a lack of project
management skills and knowledge, the design and technology
used not in line with the current technology, poor final product
quality, and low or no compatibility between the new system
and the existing systems. In addition to the previous factors, the
inadequate cost estimation, no standard methodology in place,
the end-user is not involved in the user acceptance process,
user requirements are not met, and no systematic project
evaluation process. These factors were classified into six main
categories related to project management, top management,
technology, organization, complexity/size, and the process.
This study presented effective results by identifying and
categorizing the failure factors.

The work presented in [9] studied the software failures in
medical devices in the case of the Therac-25 linear medical
accelerator to understand the importance of software quality
assurance in preventing and reducing failures. This study
reviewed and analysed the occurred six failure incidents of the
Therac-25 and identified the factors of software failure based
on the available documents and case studies. These factors are
lack of proper inspection, lack of testing, lack of education and
training, lack of documentation and guidelines, poor user
interface, and confusing malfunction errors.

Numerous success and failure factors for software projects
were discussed in [10]. The researchers reviewed a set of case
studies and software project reports to properly comprehend the

success and failure of projects. This research presented failure
factors identified in other studies, among them: instability of
requirements, incomplete requirements, poor project planning,
high schedule pressure, users not involved, poor working
environment, problems in project management, poor project
progress tracking, unrealistic project objectives, and problems
in risk management.

According to the researchers in [11], software failure occurs
when the software deviates from the expected behaviour or
cannot perform the task it was developed for. This study
examined and reviewed several works on software failure and
focused on the factors that cause the software to fail or become
inoperable. The analysis revealed that failure occurs due to
requirement mismatch or conflict, insufficient budget, discrete
allocation of tasks, frequent requirement changes, wrong
application of engineering principles, schedule pressure,
incomplete requirements, and lack of technical skills. In
addition to the previous factors, poor communication, market
and competitive pressure, lack of proper planning, software
development outsourcing, adoption of new technology into
legacy systems, and lack of testing are additional factors. These
factors must be carefully put into consideration by the analyst,
developer and user to produce a credible and reliable software
product. These factors can be classified into four categories:
management, technical, user and human factors.

Several success and failure factors for software projects
were discussed in [12]. This research critically appraised the
previous works of researchers and investigated the factors
contributing to a software project's success or failure. A non-
probability sampling technique was carried out across different
software development corporations in the Republic of
Mauritius, and an online survey was used to gather data. In
addition, a cross-tabulation was performed to identify the
factors that impact the success or failure of software projects.
Eventually, a set of guidelines and best practices were
proposed. The results obtained from this research consolidate
what has been observed in related work while adapting it to the
context of Mauritius, where the Information and
communication technologies (ICT) industry is one of the pillars
of the economy. Some failure factors included a lack of clear
goals from top management, unrealistic objectives and
expectations, and a bad project schedule.

The work presented in [13] is based on prior research. It
also drew from a recent experimental investigation. The
MMTE Company's software service provider system (ERP)
was the subject of this study. They reviewed the assessment
and results of their investigation. Based on the survey and
study, failure factors were identified and ranked. According to
the obtained results, it was concluded that among all the factors
mentioned in order: factors of new technologies, lack of
planning and insufficient planning, early identification of risks,
incomplete, unclear, and ambiguous needs of the client,
changes in the project by the client, and commitment to the
client are among the main factors of failure for this software
project.

From the available literature, it can be concluded that
software failure is frequently caused by poor software quality,
where failure can have severe consequences on individuals and

societies. The previous studies can demonstrate that modern
societies rely more and more on the proper functioning of
software systems. Even in local society, the dependency level
on software has also increased since the emergence of COVID-
19. Furthermore, the critical consequences of software failure
and the associated economic costs, along with the associated
legal liabilities, have made software failure an area of extreme
importance.

III. METHODOLOGY

This study utilizes a mixed research approach, combining
quantitative and qualitative research. The data collection
methods used in this study are questionnaires and interviews to
collect primary data. The questionnaire uses closed-ended
questions to provide quantitative data expressed in the form of
numbers. Items of the questionnaire were adapted from several
previous studies. The interview uses open-ended questions to
provide qualitative data expressed in the form of text or words
to increase the understanding.

A. Questionnaires

The questionnaire questions were designed based on the
sub-characteristics of the following quality characteristics
which include functionality, performance, reliability, security
and usability. Maintainability and portability characteristics
were not included because they reflect the developer's view.
These questions were evaluated and tested with ten developers
and twenty users to help organize, remove flaws and ensure
that the questionnaire is easy to understand, fill in and avoid
confusion.

Structured close-ended questions were used with limited
yes or no answers (also called dichotomous questions) for this
questionnaire to provide quantitative data. Since the questions
are not open-ended, there is no measurement scale used in this
questionnaire, only yes or no. Close-ended questions point
toward specific answers, so the scope for uncertainty is limited.
Each question covers or expresses one sub-characteristic. The
targeted participants were randomly selected software users.
The participants were asked if they faced any quality issues
during the usage of the software, which may lead to failure, and
determine what type of issues they had based on the mentioned
characteristics. This questionnaire was distributed across
various organizations in both public and private sectors in
Benghazi city, such as oil companies, banks, educational
organizations, health organizations, airlines and social security.
An online Google form was used instead of a hard copy
questionnaire because it saves time, is faster to fill in, reaches
more participants, reduces cost, and provides response analysis
to draw conclusions and make observations on the quality
issues that face users. Email and social media were used to
distribute this questionnaire. As shown in table 1, 250
participants (users) responded and filled in the form across 12
different organizations.

TABLE 1: Summary Participants’ distribution percentage

Organization name Number Percentage

University of Benghazi 20 8%

Arabian Gulf Oil Company 25 10%

Brega Petroleum Marketing Company 25 10%

National Oil Corporation 18 7.2%

Islamic Bank 25 10%

Bank of Development and Commerce 20 8%

Social Security 23 9.2%

Ibn Sina Clinic 20 8 %

Dar Alshifaa Hospital 18 7.2%

Libyans Airlines 19 7.6%

Berniq Airways 19 7.6%

Great Man-made River Administration 18 7.2%

Total 250 100%

The table shows that 8% of the participants included were

from the University of Benghazi, 10% were from Arabian Gulf
Oil Company, 10% were from Brega Petroleum Marketing
Company, 7.2% were from National Oil Corporation, 10%
were from Islamic Bank, and 8% were from the Bank of
Development and Commerce. While 9.2% were from Social
Security, 8% were from Ibn Sina Clinic, 7.2% were from Dar
Alshifaa Hospital, 7.6% were from Libyan Airlines, 7.6% were
from Berniq Airways, and 7.2% were from the Great Man-
made River. The results will be presented in pie charts with text
to explain the chart and reported in a table to summarize the
results.

B. Interviews

An interview was used because it is useful as a follow-up to
particular questionnaire responses. The targeted participants
were software developers. The participants were selected based
on having five years or more of experience to gather better
responses. Semi-structured interviews with open-ended
questions were used in this interview to allow free and in-depth
discussion, which provides qualitative data and helps collect
detailed information. Ten interviews have been conducted.
Seven of these interviews were face-to-face, and the other three
were conducted online using Google Meet. Each of these
interviews was carried out with two participants (developers) to
get more precise data. Responses were recorded as notes,
followed by a review session to interpret and analyse the data
that emerged from the participants using content analysis. All
the interviews combined had twenty developers.

IV. THE RESULTS

In this section, the results of the questionnaires and
interviews are presented as follows:

A. Questionnaires results

This section presents the issues identified by users, where
250 participants responded to the questionnaires and answered
the questions. As shown in table 2.

TABLE 2: Summary of questionnaire results

Characteristic Yes NO

Quality issues (60%) (40%)

Completeness (46.7%) (53.3%)

Correctness (80.7%) (19.3%)

Interoperability (75.3%) (24.7%)

Time behavior (47.3%) (52.7%)

Resource utilization (82%) (18%)

Learnability (82.7%) (17.3%)

Operability (81.3%) (18.7%)

Understandability (82%) (18%)

Maturity (44%) (56%)

Availability (84.7%) (15.3%)

Fault tolerance (22.7%) (77.3%)

Confidentiality (85.3%) (14.7%)

Integrity (81.3%) (18.7%)

The table showed that users suffered from many issues as a

result of poor quality. There were 150 users, representing 60%
of all participants, who faced some issues during the usage of
the software. Some of these issues have a high percentage of
users complaining. Out of the 150 users who had issues, there
were 80 (53.3%) users suffered from missing functions, 29
(19.3%) suffered from incorrect results, and 37 (24.7%)
complained about poor interoperability, as the software did not
operate properly with other software in the same environment.
For the performance issues, 79 (52.7%) users suffered from
poor response time behaviour, while 27 (18%) complained
about poor resource utilisation as the amount of used resources
was not reasonable. In terms of usability, 26 (17.3%) users
found it difficult to learn how to use the software, 28 (18.7%)
users found that learning how to operate and control the
software was not easy, and 27 (18%) users found it
complicated to understand the usage of the software. For
reliability issues, 84 (56%) users complained about immature
software and that the software was not stable as errors arose
during usage. Also, 23 (15.3%) users suffered from the
unavailability of software as it was not always operable, and 34
(22.7%) users found that software was affected by hardware
and other software faults in the same environment. In terms of
security, 22 (14.7%) users complained about unauthorized
access to data, and 28 (18.7%) users found that the software did
not prevent unauthorized modification of data. It can be noticed
that the issues with the highest percentage are missing
functions, poor response time behaviour and immature
software. These issues cause the software not to perform as
required and deviate from the expected results, which is exactly
the definition of software failure.

B. Interviews Results

This section presents the failure factors identified by
developers in each of the ten interviews conducted with a total
of twenty developers, as follows:

The first conducted interview revealed that software fails
because of some factors such as staff shortfalls, unrealistic
schedule and budget, development of the wrong functions,

requirements changes, lack of user involvement, incomplete
requirements, new technology, and poor planning. In addition
to inadequate or no management, poor requirement definition,
poor communication, lack of process and standards,
unmanaged risks, inability to handle the project's complexity,
bad coding practices, stakeholder politics, and commercial
pressures.

The developers who participated in the second interview
identified that the factors contributing to software failure are:
unrealistic schedule and budget, lack of user involvement, poor
planning, poor requirement definition, unmanaged risks,
commercial pressures, and the project was underestimated. In
addition, the delivery decisions were made without adequate
information about the project, the user was not involved in the
user acceptance test, user requirements were not met, and there
was poor or no design.

The result of the third interview revealed the following
factors: requirements changes, incomplete requirements, lack
of process and standards, inadequate testing, failure resulting
from unanticipated use, lack of user training, lack of
documentation, poor user interface, requirements conflict, lack
of technical skills, and poor performance.

The fourth conducted interview revealed that software fails
due to certain factors. These factors include: developing the
wrong functions, lack of user involvement, incomplete
requirements, poor planning, inadequate or no management,
poor requirement definition, lack of process and standards, and
inability to handle the project's complexity. They also include:
bad coding practices, stakeholder politics, the delivery decision
was made without adequate information about the project, the
user is not involved in the user acceptance test, user
requirements are not met, and poor user interface.

During the fifth interview, the developers who participated
in this interview identified that software failed due to staff
shortfalls, unrealistic schedule and budget, requirements
changes, new technology, and poor requirement definition. The
developers also mentioned poor communication, project was
underestimated, user was not involved in the user acceptance
test, poor or no design, inadequate testing, lack of user training,
lack of documentation, lack of technical skills, and poor
performance.

The sixth interview revealed only eight factors. As follows:
unrealistic schedule and budget, lack of user involvement,
inadequate or no management, poor communication,
unmanaged risks, bad coding practices, and inadequate testing.
While the seventh interview also defined eight factors. As
follows: lack of user involvement, incomplete requirements,
lack of process and standards, stakeholder politics, commercial
pressures, inadequate testing, and requirements conflict.

The failure factors identified by developers who
participated in the eighth interview are: unrealistic schedule
and budget, developing the wrong functions, lack of user
involvement, poor planning, poor requirement definition, poor
communication, and commercial pressures. These factors also
comprise delivery decision was made without adequate
information about the project, poor or no design, inadequate

testing, lack of user training, poor user interface, lack of
technical skills, and poor performance.

The ninth interview revealed the following factors:
unrealistic schedule and budget, development of the wrong
functions, incomplete requirements, unmanaged risks, bad
coding practices, and stakeholder politics. These factors also
include: the user is not involved in the user acceptance test,
failure resulting from unanticipated use, lack of documentation,
poor user interface, and poor performance.

The last interview revealed that the factors contributing to
software failure are: requirements changes, lack of user
involvement, inadequate or no management, poor requirement
definition, poor communication, commercial pressures, the user
is not involved in the user acceptance test, inadequate testing,
lack of technical skills, and poor performance.

Thirty factors were identified by the developers who
participated in the conducted interviews. For each interview,
the number of factors ranges from eight to seventeen. Some of
these factors are common among all interviewees. Based on the
number of occurrences of each failure factor, these are the most
common:

• Unrealistic schedule and budget.

• Developing the wrong functions.

• Requirements changes.

• Lack of user involvement.

• Incomplete requirements.

• Poor planning.

• Inadequate or no management.

• Poor requirement definition.

• Poor communication among stakeholders.

• Lack of process & standards.

• Stakeholder politics.

• Inadequate testing.

V. RECOMMENDATIONS

Based on the previously presented results, it is clear that the
software industry in the local market suffers from many issues
that contribute to software failure. After studying the
operational issues that users face and the identified failure
factors, this section provides some recommendations to act as
proactive steps to help engineers and development companies
overcome those issues and reduce the failure factors. Here are
some recommendations:

• User involvement is key. Involve the operation team
from the beginning of the project to make users work
closely with the development team and eliminate the
gap between development and operation (developers
and users).

• Before development begins, establish a set of
development and documentation standards to be used
in each stage of the development life cycle to help
increase the quality.

• Select a development methodology that suits the
project.

• Build acceptance criteria based on the quality
characteristics.

• Early testing, where it is far more effective to detect
and fix faults early than in the future when hundreds
of lines of code must be identified and corrected. It
minimizes the risk of rework and the cost associated
with overruns.

• Increase the amount of testing to detect as many
faults as possible, thus increasing the reliability of the
software.

• It’s better to conduct testing activities in pairs to
improve the error detection effectiveness and
efficiency.

• Set a realistic time frame and budget, where tight
schedules and low budgets affect the development
process.

• Establish a strong and constant communication
strategy among stakeholders.

• Use effective management methodology to control
the project.

VI. CONCLUSION

Software is one of the most important and yet one of the
most economically challenging technologies of this era. It is
among the most complex and error-prone in human history.
From the available literature, it is clear that software has
become very important in every aspect of daily life, almost in
every business domain, like education, finance, medicine,
transport, communication and more. Even in local society, the
usage rate of software has also increased and become important
in many business applications. In addition, software failure can
have severe consequences on individuals, businesses and the
whole society. Such consequences are degradation in
performance for end users, resulting in losses to the business,
causing damage to the company’s reputation, and sometimes
resulting in the loss of human lives. Thus, the study of software
failure is essential to help reduce failure in future projects,
which ultimately reflects on enhancing the quality of life.

This study has shown that users suffer from different issues
when using software, and factors that contribute to software
failure in Libyan organizations were identified. In addition,
some recommendations were provided to help enhance
software development with the overall goal of specifying,

designing, implementing, and testing a software system with
better quality to reduce the failure rate.

The limitation of this study was that some organizations
refused to collaborate, especially in the banking sector. As
known, this sector has many issues that impact individuals and
the whole society.

For future work, it is recommended to extend this study to
include a larger sample and investigate failure in other cities.

REFERENCES

[1] I. Sommerville, Software engineering. "TENTH edition Tenth Edition,"
10th ed.

[2] W. W. Schilling, “A Cost Effective Methodology for Quantitative
Evaluation of Software Reliability using Static Analysis by The
University of Toledo College of Engineering,” no. December, 2007.

[3] E. E. Ogheneovo, “Software Dysfunction: Why Do Software Fail?,” J.
Comput. Commun., vol. 02, no. 06, pp. 25–35, 2014, doi:
10.4236/jcc.2014.26004.

[4] Krasner, “Software Quality in Report,” pp. 1–46, 2021.
[5] Ieee, “IEEE Standard Glossary of Software Engineering Terminology,”

Office, vol. 121990, no. 1, p. 1, 1990, doi:
10.1109/IEEESTD.1990.101064.

[6] B. W. Boehm, “Software risk management: Principles and practices,”
Softw. Manag. Seventh Ed., no. January, pp. 365–374, 1991, doi:
10.1109/9780470049167.ch11.

[7] X. Lu, H. Liu, and W. Ye, “Analysis failure factors for small & medium
software projects based on PLS method,” ICIME 2010 - 2010 2nd IEEE
Int. Conf. Inf. Manag. Eng., vol. 3, pp. 676–680, 2010, doi:
10.1109/ICIME.2010.5478254.

[8] H. S. A. Nawi, A. A. Rahman, and O. Ibrahim, “Government’s ICT
project failure factors: A revisit,” 2011 Int. Conf. Res. Innov. Inf. Syst.
ICRIIS’11, pp. 2–7, 2011, doi: 10.1109/ICRIIS.2011.6125738.

[9] K. Madadipouya, “Importance of software quality assurance to prevent
and reduce software failures in medical devices: Therac-25 case study,”
Works.Bepress.Com, no. November, pp. 0–17, 2018, [Online].
Available: https://works.bepress.com/kasra-madadipouya/1/download/

[10] M. Ibraigheeth and S. A. Fadzli, “Core factors for software projects
success,” Int. J. Informatics Vis., vol. 3, no. 1, pp. 69–74, 2019, doi:
10.30630/joiv.3.1.217.

[11] D. I. A, N. B. K, and A. I. M, “Software Failures: A Review of Causes
and Solutions,” J. Sciecnce Technol. Educ., vol. 9, no. 1, pp. 415–423,
2021.

[12] Kotowaroo, M.Y., Sungkur, R.K, "Success and Failure Factors Affecting
Software Development Projects from IT Professionals' Perspective,"
2022, doi: 10.1007/978-981-19-3590-9_60.

[13] Shokrizadeh1, J, "Identifying and ranking key failure factors in software
projects(Case study: software services of MMTE Company)", 2023,
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4783773

