
EasyChair Preprint
№ 15407

Design and Verification of SEE-Tolerant ASICs
at CERN: Methodologies and Challenges

Adithya Pulli, Matteo Lupi, Stefano Esposito, Simone Scarfi,
Szymon Kulis and Xavier Llopart Cudie

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 12, 2024

1

Design and Verification of SEE-Tolerant ASICs at

CERN: Methodologies and Challenges

Adithya Pulli, Matteo Lupi, Stefano Esposito, Simone Scarfì, Szymon Kulis, Xavier Llopart Cudie

CERN, Geneva, Switzerland (adithya.pulli@cern.ch)

Abstract—The radiation environment of the detectors at the CERN Large Hadron Collider (LHC) presents an

unprecedented challenge for electronic system design. Since the early 1990s, CERN has been developing custom

Application Specific Integrated Circuits (ASICs) tailored to the unique requirements of LHC experiments. As ASIC

complexity increases, the tolerance to Single Event Effects (SEE) emerges as a significant design and verification

challenge. This article discusses the distinctive challenges in designing SEE-tolerant ASICs for high-energy physics

(HEP) experiments. We provide an overview of methodologies used for the design and verification of radiation-tolerant

ASICs at CERN, along with examples of SEE vulnerabilities discovered during verification.

Keywords—SEE, Soft Errors, Fault Injection, TMR

I. ASICS FOR HIGH ENERGY PHYSICS EXPERIMENTS

High-energy physics experiments demand specialized electronic components with functionalities precisely

tailored to experimental needs. Off-the-shelf commercial components often fall short of meeting the stringent

requirements of these experiments, such as radiation tolerance, fixed latency data transmission, low noise, and

dense feature integration. Hence, since the early 1990s, CERN and other HEP laboratories have been designing and

deploying custom ASICs to precisely meet these requirements [1]. Initially, ASICs primarily comprised analog

readout circuits with minimal digital logic. However, recent ASICs designed for the high luminosity upgrades of

the Large Hadron Collider (LHC) at CERN contain complex digital circuits to accommodate higher particle flux

and finer detector granularity.

When high-energy particles interact with semiconductor materials, they can disrupt device operation, leading

to cumulative and single-event radiation effects. Cumulative effects, such as total ionizing dose (TID) and

displacement damage (DD), are mitigated using physical design techniques. Single Event Effects (SEEs), manifest

as Single Event Upsets (SEUs) in memory elements or Single Event Transients (SETs) on design nodes. Various

micro-architectural techniques, including triple modular redundancy (TMR), triple time redundancy (TTR), and

error correction codes (ECC), are often employed to mitigate the effects of SEEs [2]. However, exhaustive

protection against SEEs incurs significant area and power overheads. Therefore, ASIC designers apply fault

tolerance techniques to critical portions of the design. This process of selective hardening and implementation is

error prone.

This article focuses on SEE mitigation and verification techniques used in ASICs designed at the

microelectronics group at CERN. An overview of SEE mitigation techniques, with an emphasis on Triple Modular

Redundancy (TMR), the preferred design strategy for HEP ASICs, is provided in Section II. Section III discusses

the SEE verification methodology using simulation and formal techniques. The design and verification techniques

have been successfully applied to several ASICs designed at CERN. Typical examples of bugs found in these

designs are elaborated in Section IV. SEE verification remains a complex topic and a fundamental concern for

ASIC designs in the HEP community. Present and future efforts to enhance design and verification techniques are

outlined in Section V.

II. SEE MITIGATION TECHNIQUES

Several techniques have been proposed to safeguard circuits against SEE induced by ionizing particles. In

Figure 1, the most commonly used SEE mitigation techniques are summarized. While SEE mitigation at the

technology and cell level are popular choices in the automotive and aerospace industries, system-level techniques

2

emerged as a popular choice of SEE

mitigation in the HEP community. This

preference is mainly attributed to the

unique radiation environments of HEP

experiments. The high-energy particle

flux in HEP experiments is several

orders of magnitude higher than that of

automotive and aerospace

environments. Therefore, ASICs for

HEP experiments require several orders

of magnitude better protection against

single event and cumulative effects

compared to ASICs for automotive and

aerospace applications [1]. SEE

mitigation at the system level can be

achieved either by encoding system states and other memory elements using error correction codes or through triple

module redundancy (TMR). Protection using error correction codes is highly architecture dependent and falls short

of protecting the circuits against SETs. Conversely, TMR is a generic technique that can be applied to any kind of

design.

next
state
logic

in

clk

out
output
logic

state
FF

next
state
logic

in

clk

state
FF
B

out
output
logic

state
FF
A

state
FF
C

majority
voter

`

TMRG

TMRG

TMRG directives

Figure 2 FSM triplication using TMRG. Notice that only the state is triplicated. This circuit is not protected against SETs in combinatorial

logic.

SE
E

m
it

ig
at

io
n

 t
ec

h
n

iq
u

es

Technology level

(minimize sensitive depth. e.g.
SOI)

Cell level

(design, characterize and use
custom rad-hard cells)

Increase the node capacitance
(requires layout modifications)

Information stored in multiple
nodes. (e.g. DICE, Whitaker,

SERT)

System level

(redundancy through
architectural and micro-
architectural techniques)

Encoding. (e.g. Hamming,
Reed-Solomon)

Triple Modular Redundancy
(TMR)

Figure 1 SEE mitigation techniques.

3

TMR can be implemented either at the block level or at a lower granularity. In block-TMR implementations,

the block, typically a sub-system in the ASIC, that must be protected is replicated as three block boxes, and the

majority voter is placed at the outputs of the triplet. If one of the triplicated copies of the block produces an incorrect

output due to SEE, the other two correct outputs will outvote the erroneous one. The main drawback of block-TMR

is the absence of feedback to the internal states of the block. This can lead to divergence of the internal states of the

three blocks over time due to error accumulation. While this scheme works well at low upset rates, it is not suitable

for HEP ASICs where upset rates are very high. TMR is applied at a much lower granularity, typically at the logic

level in HEP ASICs.

Manually incorporating TMR elements into RTL is time-consuming and error prone. The Triple Module

Redundancy Generator (TMRG) tool developed at CERN automates the process of triplicating digital circuits

freeing the designer from introducing the TMR code at the RTL coding stage. TMRG is an open-source tool that

can be used to triplicate Verilog designs. To ensure maximum flexibility TMRG tool allows the designer to decide

which blocks and signals should be triplicated. The directives to the TMRG tool are placed as comments in the

RTL code. An in-depth description of TMRG and its capabilities can be found in [3].

Figure 2 and Figure 3 show how TMR is applied to a generic finite state machine using TMRG. Error

accumulation is avoided by using a majority-voted state to determine the next state of the FSM. While the scheme

shown in Figure 2 is sufficient to protect the design against SEUs in the sequential cells, it does not protect the

design against SETs in the combinatorial logic or the voter. Since SETs are of concern for HEP ASICs, the full

TMR solution, as shown in Figure 3, is adopted, where combinatorial logic, sequential logic, and clocks are

triplicated. This full triplication guarantees that all the nodes in the design are robust to SEUs and SETs.

next
state
logic

in

clk

out

output
logic

state
FF

`

TMRG

TMRG

TMRG directives

next
state
logic

A

in A

clk A

out A
output
Logic

A

state
FF
A

majority
voter

A

next
state
logic

B

in B

clk B

out B
output
Logic

B

state
FF
B

majority
voter

B

next
state
logic

C

in C

clk C

out C
output
Logic

C

state
FF
C

majority
voter

C

`

`

Figure 3 Full TMR using TMRG. All the combinatorial logic, clocks and sequential cells are triplicated. This circuit is
fully protected against all SEEs.

4

Applying the TMR technique for the entire

design is prohibitively expensive. In typical HEP

ASICs, a subset of logic that must be triplicated is

identified by the designer based on the

requirements of the ASIC. A simple example of

selective triplication is when the control path of the

logic is triplicated while the data path is left

unprotected, as shown in Figure 4. The process of

selective triplication is error-prone and therefore

requires elaborate verification to prove the

correctness of TMR intent and TMR

implementation. SEE verification plays a crucial

role in HEP ASIC development and these

techniques are described in section III.

III. SEE VERIFICATION TECHNIQUES

Tolerance to Single Event Effects (SEEs) is

one of the most crucial aspects for HEP ASICs to

ensure a reliable and robust operation. The

verification of SEE is an integral part of the

functional verification process and is incorporated

into the overall verification strategy and plan. Both

simulation and formal verification techniques are used to verify the design for SEE robustness. During verification,

two major SEE verification goals must be met:

1. Correctness and completeness of TMR intent: It must be ensured that all parts of the design that need

to be triplicated for the reliable operation of the ASIC are correctly identified.

2. Correctness of TMR implementation: It must be ensured that all parts of the design identified for

triplication are correctly triplicated.

Simulation methods for SEE verification address both the verification goals. Presently, formal methods are used

only to address the correctness of TMR implementation. In section III.A, the SEE verification framework used to

implement the simulation based SEE verification strategy is detailed. Section III.B elaborates on how model

checking is used to verify TMR correctness.

A. Simulation methods

 To achieve comprehensive verification sign-off for SEE tolerance, a

robust strategy toward SEE verification must be defined. The SEE

verification requirements of the project are considered while building the

functional verification framework. SEE tolerance requirements vary

depending on the ASIC's application in the HEP experiment. For instance,

ASICs used to implement high-speed links in the detector have stringent data

integrity requirements compared to front-end readout ASICs where data

losses may be tolerated. These requirements are built into the scoreboards

used in functional verification. Early planning for comprehensive SEE

verification improves verification productivity by reducing the need for

extensive refactoring of verification frameworks at later stages. Additionally,

automatic scoreboarding of SEE tolerance enables the implementation of

highly constrained random tests that include fault injections.

next
state
logic

A

data

clk A

output
logic

A

state
FF
A

majority
voter

A

next
state
logic

B

clk B

output
logic

B

state
FF
B

majority
voter

B

next
state
logic

C

clk C

output
logic

C

state
FF
C

majority
voter

C

next
state
logic

data

clk

out
output

logic
state

FF

majority
voter

Adata

data

data path

control path

Figure 4 Selective triplication using TMR.

Design files
(RTL/GLN)

Fault Enumerator

(python library developed at CERN)

fault.sv

Filtering

strategy
(python)

Figure 5 Fault generation flow.

5

SEE verification starts with a fault generation flow, shown in Figure 5. The fault enumerator is a python library

developed at CERN. It takes the design files, either in RTL or Gate Level Netlist (GLN) format, and a filtering

strategy as inputs and generates a filtered

list of fault nodes in System Verilog format

(fault.sv). The output file generated by this

flow is utilized by SEE UVC to inject

constrained random faults (Figure 5). In the

absence of a filtering strategy, the fault

enumerator extracts an exhaustive list of

design nodes for SEU and SET injection. A

filtering strategy can optionally be

implemented using the Python APIs of the

fault enumerator. This strategy helps users

select a subset of design nodes for SEE

injection based on test intent. For instance,

it may be desirable to inject SEUs only in TMR nodes to prove the correctness of TMR implementation.

Fault injection is performed using SEE UVC, which is integrated into the UVM verification environment as

shown in Figure 6. SEE UVC consists of a random SEE injection sequence (see_rand_seq), a coverage collection

component, and a fault debug interface (fault_if). The see_rand_seq randomly injects either an SEU or a SET,

multiple times at randomly chosen moments during the simulation, on a randomly selected node. The sequence

implementation assures random stability of simulation with and without fault injection. This enables users to repeat

simulations with the same functional stimuli by either enabling or disabling fault injection. In addition to assuring

random stability, see_rand_seq also allows users to easily constrain and control fault type, fault time, fault node,

and fault duration (for SETs).

During fault injection, SEU is modeled as a deposit of the inverted value on a memory element, and SET is

modeled as a temporary glitch on a net using force and release mechanisms. The implementation of deposit, force,

and release utilize uvm_hdl_* methods which

enable efficient simulator interoperability of SEE

UVC. The pseudocode to model SEU and SET

injection is shown in Figure 7.

SEE UVC also includes a coverage collection

component that samples a coverpoint on every

fault injection. This data when collected over

several fault simulations provides a useful metric

of the number of faults injected per faultable node.

Fault coverage information in conjunction with

functional and code coverage data is used to gain

insights into how much of the functionality was

exercised with fault injections. In addition to the coverage collection component, SEE UVC also includes fault_if

which provides high-level insight into the status of fault injection. This is an extremely useful debug feature for

interactive debugging that enables users to quickly identify which fault in the design caused a specific behavior of

the circuit.

Various fault campaigns are included in the verification plan. A fault campaign is defined as a regression

consisting of constrained random tests, which are run multiple times to achieve a specific SEE verification goal.

Pass rate and coverage are tracked for each fault campaign and are used as indicators to assess the completeness of

SEE verification. Some typical examples of fault campaigns are summarized in Table 1.

DUT
(RTL/
GLN)

te
st

_v
ir

tu
al

_s
e

q

coverage
collector

see_rand_seq

fault_if

UVCsUVCsUVCs
virtual

sequencer

uvm_test

uvm_env

see_uvc

fault.sv

Figure 6 SEE UVM Verification Component.

Figure 7 Methods for SEU and SET injection.

6

Table 1 Examples of fault campaigns.

Name Goal Method Abstraction

TMR Verify that all nodes that are intended

to be triplicated are correctly

triplicated

Two simulations are run in parallel with

the same random seed: one with fault

injections and the other without. All the

outputs of the DUT are recorded during

simulations and compared at the end. If

TMR is correctly implemented, then

outputs of both the simulations must

match

RTL, GLN

Non-TMR Verify the TMR intent is correct Inject SEEs in non-TMR nodes and check

that the fault tolerance requirements are

preserved

RTL

Random Verify the SEE robustness of the

DUT

Inject random SEEs in the DUT at various

test phases. Interleave test phases with

SEE injection and without SEE injection.

Enable SEE error tolerance in the

checkers during SEE injection and use

strict checkers when SEE injection is

disabled.

RTL, GLN

B. Formal methods

While simulation based SEE verification is the main workhorse for verifying SEE robustness, formal

verification techniques are also incorporated. Formal property verification is used to check the correctness of TMR

implementation at GLN level [5]. Due to the very low-level nature of the TMR strategy, the triplicated parts of

digital circuits recover from SEUs in a predictable time (typically one clock cycle). This observation is used to

formally verify that a few cycles after

one of the triplicated nodes is upset by

an SEU, all the triplicated copies of that

node are equal. The SEUs are modeled

by modifying the standard cell

primitives for sequential cells. An

internal signal (q_seu) is added to the

primitive of the cell, which is left

unconnected, allowing the model-

checking tool to control it. When this

signal is asserted the content of the

sequential cell is toggled (see Figure

8), emulating the effect of an SEU.

The fault enumerator python library described in section III.A is used to generate a list of System Verilog

assertions and assumptions for all the TMR nodes in the design (Figure 9). Additionally, it also generates TCL files

needed to steer the formal verification tool. For each of the sequential logic elements identified, the framework

generates a set of assumptions and assertions. Even though the number of properties is considerable for larger

Figure 8 Example of TMR assertions.

7

designs, their computational complexity is low given their limited duration.

The pseudocode of generated assertions and assumptions is shown in Figure

10.

The assumptions ensure that the SEUs injected are not producing false

positives. The first assumption (line 7 in Figure 10) allows injecting at most

only one SEU per triplet. The second assumption (line 8 in Figure 10) ensures

that each SEU has a duration of one clock cycle. This does not lose in

generality since the goal of the proof is to check that an SEU is corrected

within a certain number of clock cycles. The number of SEU injected in the

whole design is not limited, meaning that the tool can inject one SEU in each

triplet of the design. Despite this being an unrealistic condition, it does not

affect a correctly triplicated design and it allows speeding up proof.

The three assertions (lines 2-4 in Figure

10) verify that an SEU is corrected within

two clock cycles, for each of the three SEU

in a triplet. During the first clock cycle, the

SEU is injected; in the second, the SEU

affects the output of the D-flipflop (DFF);

and finally, the DFF is corrected in the third

clock cycle. These properties should hold at

any point in time for any correctly triplicated DFF in the design, requiring no additional information on the design

functionality.

IV. ANATOMY OF SEE VULNERABILITIES (BUGS)

SEE design and verification techniques discussed in sections II and III have been successfully applied to various

ASICs designed for high luminosity upgrades of LHC at CERN [6][7]. Over time, these techniques have matured

and become widely accepted methodologies for designing SEE-tolerant ASICs within the HEP community. In this

section, examples of some typical SEE bugs are provided.

A. Logic optimizations

Modern synthesis tools implement several logic optimization steps to achieve Power-Performance-Area (PPA)

goals. Since the SEE mitigation using TMR relies on redundancy, the synthesis optimization steps often remove

Design files
(RTL/GLN)

Fault Enumerator

(python library developed at CERN)

Filtering

strategy
(python)

SVA
(assertions and
assumptions)

TCL
(for model checking

tool)

next
state
logic

A

in A

clk A

out Aoutput
logic

A

state
FF
A

majority
voter

A

next
state
logic

B

in B

clk B

out Boutput
logic

B

state
FF
B

majority
voter

B

next
state
logic

C

in C

clk C

out Coutput
logic

C

state
FF
C

majority
voter

C

next
state
logic

A

in A

clk A

out Aoutput
logic

A

state
FF
A

majority
voter

A

next
state
logic

B

in B

clk B

out Boutput
logic

B

state
FF
B

majority
voter

B

next
state
logic

C

in C

clk C

out Coutput
logic

C

state
FF
C

majority
voter

C

Figure 10 Pseudocode for the generated SVA.

Figure 11 Illustration of logic optimization by the synthesis tool potentially compromising the SEE robustness of a design. The circuit on the

left represents the intended design. In the absence of “do not touch” constraints on the voter, the synthesis tool may optimize the voters.

Figure 9 SVA generation flow.

8

redundant logic. As shown in Figure 11, the design intent requires triplication of voters. The synthesis tool may

optimize the logic and remove two of the voters. The synthesized design is therefore no longer protected against

SETs in voters. To avoid such optimizations, the TMRG tool generates a set of design constraints to prevent

synthesis optimization of voters.

B. Using non-voted signals

TMRG serves as a convenience tool that offloads the time-consuming and error-prone task of inserting TMR

code from the RTL designer. However, it must be noted that incorrect use of TMRG directives can often result in

unintended outcomes. One such incorrect TMRG directive (Figure 12) is the use of a non-voted signal to determine

the next state in the FSM.

C. Missing else

Another typical error observed in RTL is the omission of the “else” in a conditional statement within a sequential

process (see Figure 13). This missing else condition results in missing feedback from the voters thus leading to

error accumulation in the triplicated registers.

V. CHALLENGES AND FUTURE WORK

Selective hardening of ASICs used in high-energy physics experiments is a time-consuming and error-prone

process. The verification of SEE tolerance in such ASICs presents significant challenges. This paper has presented

an overview of SEE mitigation and verification techniques used in the design of HEP ASICs. Based on our

experience, SEE verification is resource-intensive in terms of engineering resources, compute resources, licenses,

and time. The key to successful SEE verification lies in early planning. SEE verification must be considered while

defining the verification strategy and implementing the functional verification framework. Although our SEE

verification framework addresses several challenges, there are areas for potential improvement:

Figure 12 Illustration of a bug caused by the incorrect use of a non-voted signal instead of a voted signal by the designer. The circuit and code

on the left display the design with the bug (marked with a red X). The circuit and code on the right show the correctly triplicated design.

next
state
logic

A

in A

clk A

out Aoutput
logic

A

state
FF
A

majority
voter

A

next
state
logic

B

in B

clk B

out Boutput
logic

B

state
FF
B

majority
voter

B

next
state
logic

C

in C

clk C

out Coutput
logic

C

state
FF
C

majority
voter

C

next
state
logic

A

in A

clk A

out Aoutput
logic

A

state
FF
A

majority
voter

A

next
state
logic

B

in B

clk B

out Boutput
logic

B

state
FF
B

majority
voter

B

next
state
logic

C

in C

clk C

out Coutput
logic

C

state
FF
C

majority
voter

C

9

• Currently, the formal verification described in section III.B is limited to checking TMR implementation. An

extension of formal verification to include verifying TMR intent is desired. This would involve identifying

properties of the design that must be maintained despite SEUs and then using these properties, together with

generated SVAs, in model checking. This approach would enable the use of model-checking for both design

space exploration and the reduction of fault campaigns.

• Another area not currently explored is SET verification using formal techniques. Modeling SET behavior

for the model-checking tool is non-trivial. One potential approach to explore involves transforming SETs

into multi-bit SEUs in the design and then using our formal SEU injection methods. While this approach

works well for most standard cells in the design, it is not applicable for SETs in clock buffers and

asynchronous logic, which requires further investigation.

• Although TMRG is a valuable convenience tool, it is not free from bugs. To enhance confidence in the TMR

RTL generated by TMRG, the implementation of a formal equivalence-checking tool that can account for

TMR insertion is desired. Off-the-shelf Logic Equivalence Check (LEC) tools may not work out of the box

for such equivalence checking, necessitating further research in this direction.

REFERENCES

[1] Faccio, F., ASIC survival in the radiation environment of the LHC experiments: 30 years of struggle and still tantalizing, Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume

1045 (2023).

[2] Caratelli, A., et al, Low-power SEE hardening techniques and error rate evaluation in 65 nm readout ASICs, PoS TWEPP 2019 (2020)

pg. 015.

[3] Kulis, S., Single Event Effects mitigation with TMRG tool, JINST 12 (01) (Jan. 2017) pg. C01082–C01082.

Figure 13 Illustration of a bug in a simple counter due to the omission of an else condition by the designer is shown on the left. Although

this circuit produces functionally correct output under normal conditions, it lacks protection against SEUs. When the enable signal to the

counter is held low, an SEU in one of the state flip-flops cannot be corrected. If another SEU occurs in a different state flip-flop while the
enable signal remains low, the circuit will produce an incorrect output.

majority
voter

A

en A

clk A

out A

state
FF
A

majority
voter

B

en B

clk B

out B

state
FF
B

majority
voter

C

en C

clk C

out C

state
FF
C

majority
voter

A

majority
voter

B

majority
voter

C

++

0

1

++

0

1

++

0

1

majority
voter

A

en A

clk A

out A

state
FF
A

majority
voter

B

en B

clk B

out B

state
FF
B

majority
voter

C

en C

clk C

out C

state
FF
C

majority
voter

A

majority
voter

B

majority
voter

C

++

0

1

++

0

1

++

0

1

10

[4] Pulli, A., Lupi, M., A simulation methodology for verification of transient fault tolerance of ASICs designed for high-energy physics

experiments, JINST 18 (2023).

[5] Lupi, M., Pulli, A., SEU injection framework for radiation-tolerant ASICs, a formal verification approach, JINST 18 (2023)

[6] Pulli, A., Kremastiotis, I., Kulis, S., Verification methodology of a multi-mode radiation-hard high-speed transceiver ASIC, JINST 17

(2022).

[7] Scarfi, S., Verification Environment for ALTIROC ASIC of the ATLAS High Granularity Timing Detector, TWEPP (2023).

