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Abstract—The radiation environment of the detectors at the CERN Large Hadron Collider (LHC) presents an 

unprecedented challenge for electronic system design. Since the early 1990s, CERN has been developing custom 

Application Specific Integrated Circuits (ASICs) tailored to the unique requirements of LHC experiments. As ASIC 

complexity increases, the tolerance to Single Event Effects (SEE) emerges as a significant design and verification 

challenge. This article discusses the distinctive challenges in designing SEE-tolerant ASICs for high-energy physics 

(HEP) experiments. We provide an overview of methodologies used for the design and verification of radiation-tolerant 

ASICs at CERN, along with examples of SEE vulnerabilities discovered during verification. 
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I.  ASICS FOR HIGH ENERGY PHYSICS EXPERIMENTS 

High-energy physics experiments demand specialized electronic components with functionalities precisely 

tailored to experimental needs. Off-the-shelf commercial components often fall short of meeting the stringent 

requirements of these experiments, such as radiation tolerance, fixed latency data transmission, low noise, and 

dense feature integration. Hence, since the early 1990s, CERN and other HEP laboratories have been designing and 

deploying custom ASICs to precisely meet these requirements [1]. Initially, ASICs primarily comprised analog 

readout circuits with minimal digital logic. However, recent ASICs designed for the high luminosity upgrades of 

the Large Hadron Collider (LHC) at CERN contain complex digital circuits to accommodate higher particle flux 

and finer detector granularity. 

When high-energy particles interact with semiconductor materials, they can disrupt device operation, leading 

to cumulative and single-event radiation effects. Cumulative effects, such as total ionizing dose (TID) and 

displacement damage (DD), are mitigated using physical design techniques. Single Event Effects (SEEs), manifest 

as Single Event Upsets (SEUs) in memory elements or Single Event Transients (SETs) on design nodes. Various 

micro-architectural techniques, including triple modular redundancy (TMR), triple time redundancy (TTR), and 

error correction codes (ECC), are often employed to mitigate the effects of SEEs [2]. However, exhaustive 

protection against SEEs incurs significant area and power overheads. Therefore, ASIC designers apply fault 

tolerance techniques to critical portions of the design. This process of selective hardening and implementation is 

error prone. 

This article focuses on SEE mitigation and verification techniques used in ASICs designed at the 

microelectronics group at CERN. An overview of SEE mitigation techniques, with an emphasis on Triple Modular 

Redundancy (TMR), the preferred design strategy for HEP ASICs, is provided in Section II. Section III discusses 

the SEE verification methodology using simulation and formal techniques. The design and verification techniques 

have been successfully applied to several ASICs designed at CERN. Typical examples of bugs found in these 

designs are elaborated in Section IV. SEE verification remains a complex topic and a fundamental concern for 

ASIC designs in the HEP community. Present and future efforts to enhance design and verification techniques are 

outlined in Section V. 

II. SEE MITIGATION TECHNIQUES 

Several techniques have been proposed to safeguard circuits against SEE induced by ionizing particles. In 

Figure 1, the most commonly used SEE mitigation techniques are summarized. While SEE mitigation at the 

technology and cell level are popular choices in the automotive and aerospace industries, system-level techniques 
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emerged as a popular choice of SEE 

mitigation in the HEP community. This 

preference is mainly attributed to the 

unique radiation environments of HEP 

experiments. The high-energy particle 

flux in HEP experiments is several 

orders of magnitude higher than that of 

automotive and aerospace 

environments. Therefore, ASICs for 

HEP experiments require several orders 

of magnitude better protection against 

single event and cumulative effects 

compared to ASICs for automotive and 

aerospace applications [1]. SEE 

mitigation at the system level can be 

achieved either by encoding system states and other memory elements using error correction codes or through triple 

module redundancy (TMR). Protection using error correction codes is highly architecture dependent and falls short 

of protecting the circuits against SETs. Conversely, TMR is a generic technique that can be applied to any kind of 

design. 
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Figure 2 FSM triplication using TMRG. Notice that only the state is triplicated. This circuit is not protected against SETs in combinatorial 

logic. 
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TMR can be implemented either at the block level or at a lower granularity. In block-TMR implementations, 

the block, typically a sub-system in the ASIC, that must be protected is replicated as three block boxes, and the 

majority voter is placed at the outputs of the triplet. If one of the triplicated copies of the block produces an incorrect 

output due to SEE, the other two correct outputs will outvote the erroneous one. The main drawback of block-TMR 

is the absence of feedback to the internal states of the block. This can lead to divergence of the internal states of the 

three blocks over time due to error accumulation. While this scheme works well at low upset rates, it is not suitable 

for HEP ASICs where upset rates are very high. TMR is applied at a much lower granularity, typically at the logic 

level in HEP ASICs.  

Manually incorporating TMR elements into RTL is time-consuming and error prone. The Triple Module 

Redundancy Generator (TMRG) tool developed at CERN automates the process of triplicating digital circuits 

freeing the designer from introducing the TMR code at the RTL coding stage. TMRG is an open-source tool that 

can be used to triplicate Verilog designs. To ensure maximum flexibility TMRG tool allows the designer to decide 

which blocks and signals should be triplicated. The directives to the TMRG tool are placed as comments in the 

RTL code. An in-depth description of TMRG and its capabilities can be found in [3]. 

Figure 2 and Figure 3 show how TMR is applied to a generic finite state machine using TMRG. Error 

accumulation is avoided by using a majority-voted state to determine the next state of the FSM. While the scheme 

shown in Figure 2 is sufficient to protect the design against SEUs in the sequential cells, it does not protect the 

design against SETs in the combinatorial logic or the voter. Since SETs are of concern for HEP ASICs, the full 

TMR solution, as shown in Figure 3, is adopted, where combinatorial logic, sequential logic, and clocks are 

triplicated. This full triplication guarantees that all the nodes in the design are robust to SEUs and SETs. 
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Figure 3 Full TMR using TMRG. All the combinatorial logic, clocks and sequential cells are triplicated. This circuit is 
fully protected against all SEEs. 
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Applying the TMR technique for the entire 

design is prohibitively expensive. In typical HEP 

ASICs, a subset of logic that must be triplicated is 

identified by the designer based on the 

requirements of the ASIC. A simple example of 

selective triplication is when the control path of the 

logic is triplicated while the data path is left 

unprotected, as shown in Figure 4. The process of 

selective triplication is error-prone and therefore 

requires elaborate verification to prove the 

correctness of TMR intent and TMR 

implementation. SEE verification plays a crucial 

role in HEP ASIC development and these 

techniques are described in section III. 

III. SEE VERIFICATION TECHNIQUES 

Tolerance to Single Event Effects (SEEs) is 

one of the most crucial aspects for HEP ASICs to 

ensure a reliable and robust operation. The 

verification of SEE is an integral part of the 

functional verification process and is incorporated 

into the overall verification strategy and plan. Both 

simulation and formal verification techniques are used to verify the design for SEE robustness. During verification, 

two major SEE verification goals must be met: 

1. Correctness and completeness of TMR intent: It must be ensured that all parts of the design that need 

to be triplicated for the reliable operation of the ASIC are correctly identified. 

2. Correctness of TMR implementation: It must be ensured that all parts of the design identified for 

triplication are correctly triplicated. 

Simulation methods for SEE verification address both the verification goals. Presently, formal methods are used 

only to address the correctness of TMR implementation. In section III.A, the SEE verification framework used to 

implement the simulation based SEE verification strategy is detailed. Section III.B elaborates on how model 

checking is used to verify TMR correctness. 

A. Simulation methods 

 To achieve comprehensive verification sign-off for SEE tolerance, a 

robust strategy toward SEE verification must be defined. The SEE 

verification requirements of the project are considered while building the 

functional verification framework. SEE tolerance requirements vary 

depending on the ASIC's application in the HEP experiment. For instance, 

ASICs used to implement high-speed links in the detector have stringent data 

integrity requirements compared to front-end readout ASICs where data 

losses may be tolerated. These requirements are built into the scoreboards 

used in functional verification. Early planning for comprehensive SEE 

verification improves verification productivity by reducing the need for 

extensive refactoring of verification frameworks at later stages. Additionally, 

automatic scoreboarding of SEE tolerance enables the implementation of 

highly constrained random tests that include fault injections. 
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Figure 4 Selective triplication using TMR. 
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SEE verification starts with a fault generation flow, shown in Figure 5. The fault enumerator is a python library 

developed at CERN. It takes the design files, either in RTL or Gate Level Netlist (GLN) format, and a filtering 

strategy as inputs and generates a filtered 

list of fault nodes in System Verilog format 

(fault.sv). The output file generated by this 

flow is utilized by SEE UVC to inject 

constrained random faults (Figure 5). In the 

absence of a filtering strategy, the fault 

enumerator extracts an exhaustive list of 

design nodes for SEU and SET injection. A 

filtering strategy can optionally be 

implemented using the Python APIs of the 

fault enumerator. This strategy helps users 

select a subset of design nodes for SEE 

injection based on test intent. For instance, 

it may be desirable to inject SEUs only in TMR nodes to prove the correctness of TMR implementation. 

Fault injection is performed using SEE UVC, which is integrated into the UVM verification environment as 

shown in Figure 6. SEE UVC consists of a random SEE injection sequence (see_rand_seq), a coverage collection 

component, and a fault debug interface (fault_if). The see_rand_seq randomly injects either an SEU or a SET, 

multiple times at randomly chosen moments during the simulation, on a randomly selected node. The sequence 

implementation assures random stability of simulation with and without fault injection. This enables users to repeat 

simulations with the same functional stimuli by either enabling or disabling fault injection. In addition to assuring 

random stability, see_rand_seq also allows users to easily constrain and control fault type, fault time, fault node, 

and fault duration (for SETs). 

During fault injection, SEU is modeled as a deposit of the inverted value on a memory element, and SET is 

modeled as a temporary glitch on a net using force and release mechanisms. The implementation of deposit, force, 

and release utilize uvm_hdl_* methods which 

enable efficient simulator interoperability of SEE 

UVC. The pseudocode to model SEU and SET 

injection is shown in Figure 7.  

SEE UVC also includes a coverage collection 

component that samples a coverpoint on every 

fault injection. This data when collected over 

several fault simulations provides a useful metric 

of the number of faults injected per faultable node. 

Fault coverage information in conjunction with 

functional and code coverage data is used to gain 

insights into how much of the functionality was 

exercised with fault injections. In addition to the coverage collection component, SEE UVC also includes fault_if 

which provides high-level insight into the status of fault injection. This is an extremely useful debug feature for 

interactive debugging that enables users to quickly identify which fault in the design caused a specific behavior of 

the circuit. 

Various fault campaigns are included in the verification plan. A fault campaign is defined as a regression 

consisting of constrained random tests, which are run multiple times to achieve a specific SEE verification goal. 

Pass rate and coverage are tracked for each fault campaign and are used as indicators to assess the completeness of 

SEE verification. Some typical examples of fault campaigns are summarized in Table 1. 
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Table 1 Examples of fault campaigns. 

Name Goal Method Abstraction 

TMR Verify that all nodes that are intended 

to be triplicated are correctly 

triplicated 

Two simulations are run in parallel with 

the same random seed: one with fault 

injections and the other without. All the 

outputs of the DUT are recorded during 

simulations and compared at the end. If 

TMR is correctly implemented, then 

outputs of both the simulations must 

match 

RTL, GLN 

Non-TMR Verify the TMR intent is correct Inject SEEs in non-TMR nodes and check 

that the fault tolerance requirements are 

preserved 

RTL 

Random Verify the SEE robustness of the 

DUT 

Inject random SEEs in the DUT at various 

test phases. Interleave test phases with 

SEE injection and without SEE injection. 

Enable SEE error tolerance in the 

checkers during SEE injection and use 

strict checkers when SEE injection is 

disabled. 

RTL, GLN 

 

B. Formal methods 

While simulation based SEE verification is the main workhorse for verifying SEE robustness, formal 

verification techniques are also incorporated. Formal property verification is used to check the correctness of TMR 

implementation at GLN level [5]. Due to the very low-level nature of the TMR strategy, the triplicated parts of 

digital circuits recover from SEUs in a predictable time (typically one clock cycle). This observation is used to 

formally verify that a few cycles after 

one of the triplicated nodes is upset by 

an SEU, all the triplicated copies of that 

node are equal. The SEUs are modeled 

by modifying the standard cell 

primitives for sequential cells. An 

internal signal (q_seu) is added to the 

primitive of the cell, which is left 

unconnected, allowing the model-

checking tool to control it. When this 

signal is asserted the content of the 

sequential cell is toggled (see Figure 

8), emulating the effect of an SEU. 

The fault enumerator python library described in section III.A is used to generate a list of System Verilog 

assertions and assumptions for all the TMR nodes in the design (Figure 9). Additionally, it also generates TCL files 

needed to steer the formal verification tool. For each of the sequential logic elements identified, the framework 

generates a set of assumptions and assertions. Even though the number of properties is considerable for larger 

Figure 8 Example of TMR assertions. 
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designs, their computational complexity is low given their limited duration. 

The pseudocode of generated assertions and assumptions is shown in Figure 

10. 

The assumptions ensure that the SEUs injected are not producing false 

positives. The first assumption (line 7 in Figure 10) allows injecting at most 

only one SEU per triplet. The second assumption (line 8 in Figure 10) ensures 

that each SEU has a duration of one clock cycle. This does not lose in 

generality since the goal of the proof is to check that an SEU is corrected 

within a certain number of clock cycles. The number of SEU injected in the 

whole design is not limited, meaning that the tool can inject one SEU in each 

triplet of the design. Despite this being an unrealistic condition, it does not 

affect a correctly triplicated design and it allows speeding up proof. 

The three assertions (lines 2-4 in Figure 

10) verify that an SEU is corrected within 

two clock cycles, for each of the three SEU 

in a triplet. During the first clock cycle, the 

SEU is injected; in the second, the SEU 

affects the output of the D-flipflop (DFF); 

and finally, the DFF is corrected in the third 

clock cycle. These properties should hold at 

any point in time for any correctly triplicated DFF in the design, requiring no additional information on the design 

functionality. 

IV. ANATOMY OF SEE VULNERABILITIES (BUGS) 

SEE design and verification techniques discussed in sections II and III have been successfully applied to various 

ASICs designed for high luminosity upgrades of LHC at CERN [6][7]. Over time, these techniques have matured 

and become widely accepted methodologies for designing SEE-tolerant ASICs within the HEP community. In this 

section, examples of some typical SEE bugs are provided. 

A. Logic optimizations 

Modern synthesis tools implement several logic optimization steps to achieve Power-Performance-Area (PPA) 

goals. Since the SEE mitigation using TMR relies on redundancy, the synthesis optimization steps often remove 
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Figure 10 Pseudocode for the generated SVA. 

Figure 11 Illustration of logic optimization by the synthesis tool potentially compromising the SEE robustness of a design. The circuit on the 

left represents the intended design. In the absence of “do not touch” constraints on the voter, the synthesis tool may optimize the voters. 

Figure 9 SVA generation flow. 
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redundant logic. As shown in Figure 11, the design intent requires triplication of voters. The synthesis tool may 

optimize the logic and remove two of the voters. The synthesized design is therefore no longer protected against 

SETs in voters. To avoid such optimizations, the TMRG tool generates a set of design constraints to prevent 

synthesis optimization of voters.  

B. Using non-voted signals 

TMRG serves as a convenience tool that offloads the time-consuming and error-prone task of inserting TMR 

code from the RTL designer. However, it must be noted that incorrect use of TMRG directives can often result in 

unintended outcomes. One such incorrect TMRG directive (Figure 12) is the use of a non-voted signal to determine 

the next state in the FSM.  

C. Missing else 

Another typical error observed in RTL is the omission of the “else” in a conditional statement within a sequential 

process (see Figure 13). This missing else condition results in missing feedback from the voters thus leading to 

error accumulation in the triplicated registers.  

V. CHALLENGES AND FUTURE WORK 

Selective hardening of ASICs used in high-energy physics experiments is a time-consuming and error-prone 

process. The verification of SEE tolerance in such ASICs presents significant challenges. This paper has presented 

an overview of SEE mitigation and verification techniques used in the design of HEP ASICs. Based on our 

experience, SEE verification is resource-intensive in terms of engineering resources, compute resources, licenses, 

and time. The key to successful SEE verification lies in early planning. SEE verification must be considered while 

defining the verification strategy and implementing the functional verification framework. Although our SEE 

verification framework addresses several challenges, there are areas for potential improvement: 

Figure 12 Illustration of a bug caused by the incorrect use of a non-voted signal instead of a voted signal by the designer. The circuit and code 

on the left display the design with the bug (marked with a red X). The circuit and code on the right show the correctly triplicated design. 
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• Currently, the formal verification described in section III.B is limited to checking TMR implementation. An 

extension of formal verification to include verifying TMR intent is desired. This would involve identifying 

properties of the design that must be maintained despite SEUs and then using these properties, together with 

generated SVAs, in model checking. This approach would enable the use of model-checking for both design 

space exploration and the reduction of fault campaigns. 

• Another area not currently explored is SET verification using formal techniques. Modeling SET behavior 

for the model-checking tool is non-trivial. One potential approach to explore involves transforming SETs 

into multi-bit SEUs in the design and then using our formal SEU injection methods. While this approach 

works well for most standard cells in the design, it is not applicable for SETs in clock buffers and 

asynchronous logic, which requires further investigation. 

• Although TMRG is a valuable convenience tool, it is not free from bugs. To enhance confidence in the TMR 

RTL generated by TMRG, the implementation of a formal equivalence-checking tool that can account for 

TMR insertion is desired. Off-the-shelf Logic Equivalence Check (LEC) tools may not work out of the box 

for such equivalence checking, necessitating further research in this direction. 
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