
EasyChair Preprint
№ 15536

Testing Arithmetic Circuits: Full Adder Based
Circuits

Rama Murthy Garimella and C.V. Vismay

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 6, 2024

 TESTING ARITHMETIC CIRCUITS: FULL ADDER BASED CIRCUITS

Garimella Rama Murthy, Vismay C V,

Department of Computer Science,

Mahindra University, Hyderabad, Telangana, India

ABSTRACT

In this research paper, it is reasoned that for a single full adder (1-bit full adder), the
sum and carry outputs are permutation invariant in the three input variables. Further,
for 2-bit full adder and arbitrary N-bit full adder, the sum and carry outputs are
partially invariant in the input variables.These results enable reducing the number of
input combinations (from truth table) for which the 1-bit/N-bit full adder needs to
be tested (for correctness)

1. INTRODUCTION:

 With the advent of Integrated Circuit (IC) design based on packing
transistors and other electronic components, manufacturers were led to Small Scale
Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration (LSI) and Very
Large Scale Integration (VLSI) schemes. Particularly, digital integrated circuits were
commercially very successful. Due to problems in manufacturing process, sometimes the
final IC products were found to be defective. But, it is very clear that the defective
digital IC packages will drastically affect the success of market penetration. Hence,
manufacturers focused onto methods for testing digital ICs.

Exhaustive testing of any combinational circuit with ‘N’ inputs requires (2𝑁)T seconds,
if ‘T’ seconds are required for testing the output of circuit for any one combination
of Boolean inputs (i.e. any row of the associated truth table z0. Hence, the time
complexity of exhaustive testing in this case is exponential in ‘N’. Thus, researchers
focused efforts on isolating FAULT MODELS which were realistic and the IC testing
based on them is efficient. Other innovative approaches such as Design for Testability
(DFT) and Built-in-Self Test (BIST) were also proposed.

Motivated by the problem of efficient digital IC testing, the authors focused on
testing arithmetic circuits such as 1-bit full adder, 2-bit full adder and so on. This
research paper is organized as follows. In Section 2, Boolean functions and truth table
of 1-bit and 2-bit full adders are given. In Section 3, it is reasoned that the outputs
of 2-bit/N-bit full adder are invariant under PARTIAL permutation of input variables.
The research paper concludes in Section 4.

2. BOOLEAN FUNCTIONS AND TRUTH TABLES FOR 1-BIT AND 2-BIT FULL ADDERS:

 This section provides the Boolean expressions and truth tables for both 1-
bit and 2-bit full adders.

2.1 1-BIT FULL ADDER:

The 1-bit full adder adds three input bits: A, B and Cin (carry-in). It produces two outputs
Sum (S) and Carryout (Cout). The Boolean functions for Sum and Carry are as follows,

Sum (S) = A⊕B⊕Ci

 Carry (Cout) = A.B + AB’Cin + A’BCin

 = A.B + Cin(A⊕B)

Truth Table:

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

2.2 2-BIT FULL ADDER:

The 2-bit full adder adds 2-bit binary numbers (A1A0 and B1B0) along with a carry-in (Cin) bit.
The 5 inputs produce a total of 3 outputs Sum (S1, S0) and Carry (C1). The Boolean functions
for 2-bit full adder are shown below.

Sum (S0) = A0 ⊕ B0 ⊕ Cin

Carry (C0) = A0.B0 + Cin(A0⊕B0)

Sum (S1) = A1 ⊕ B1 ⊕ C0

Carry (C1) = A1.B1 + C0(A1⊕B1)

(in terms of the least significant bits/initial input variables):

Carry (C1) = A1B1 + [A0.B0 + Cin(A0⊕B0)] (A1⊕B1)

Truth Table:

A1 B1 A0 B0 Cin S1 S0 Cout

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0

0 0 1 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 1 1 1 0 0

0 0 1 0 1 1 1 0

0 0 1 1 1 0 0 1

0 1 0 0 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 0 1 1 0

0 1 1 1 0 0 0 1

0 1 0 0 1 1 0 0

0 1 0 1 1 0 1 1

0 1 1 0 1 0 0 1

0 1 1 1 1 1 1 1

1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0

1 0 1 0 0 1 1 0

1 0 1 1 0 0 0 1

1 0 0 0 1 1 0 0

1 0 0 1 1 0 1 1

1 0 1 0 1 0 0 1

1 0 1 1 1 1 1 1

1 1 0 0 0 1 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 0 0 1

1 1 1 1 0 1 1 1

1 1 0 0 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 0 1

1 1 1 1 1 0 1 1

3. SYMMETRY AND PARTIAL SYMMETRY RESULTS OF CASCADE OF FULL ADDERS

3.1 Symmetry in Boolean functions:

A Boolean function is said to be symmetric if the outputs remain invariant when the inputs
for that function are permuted. A function f(x1, x2, x3, ..., xn) is said to be symmetric if the
output of this function remains unchanged even when the order of inputs are changed or
swapped, i.e., for example, a function having three inputs x1, x2, x3, can be written as
f(x1, x2, x3) = f(x2, x3, x1) = f(x3, x1, x2). This property presents us with the possibility of

reducing the number of test cases to examine to a certain extent instead of exhaustive
testing of the combinations of inputs for the IC’s.

A ‘n’ input function of a combinatorial circuit would generate a total of 2n input
combinations. This number of combinations can be reduced from exponential to a linear
complexity leveraging the concept of symmetry in Boolean functions. It would become
sufficient to test for ‘n+1’ set of unique combinations based on the number of ones(1’s) in
the input to validate the function.

3.2 Symmetry in 1-bit Full Adder:

A 1-bit Full Adder takes in 3 inputs (A, B, Cin) and produces 2 outputs namely Sum(S) and
Carry(C). The Boolean functions for these 2 output terms Sum (S) = A⊕B⊕Ci and
Carry (Cout) = A.B + Cin(A⊕B). These two functions exhibit full symmetry and thus simplifies
analysis and testing requiring only (n+1) i.e., (3+1 = 4) unique input combinations (based on
the number of ones in the input) instead of eight.

3.3 Symmetry in 2-bit Full Adder:

Extending to a 2-bit Full Adder that can be represented as a serial combination of two 1-bit
Full Adder, which takes in a total of five inputs (A1, B1, A0, B0, Cin) and produces three
outputs, Sum (S0) = A0 ⊕ B0 ⊕ Cin, Sum (S1) = A1 ⊕ B1 ⊕ C0 and a final Carry (C1) = A1.B1 +
C0(A1⊕B1) along with an intermediate carry generated by the first Full Adder Carry (C0) =
A0.B0 + Cin(A0⊕B0) that goes in as the Cin for the second Full Adder.

While the Boolean function of the outputs generated by the individual 1-bit Full Adders in
the combination retain the symmetric properties with respect to their individual inputs, the
hierarchical flow of information from the first 1-bit Full Adder to the second through the
intermediate carry function introduces dependencies between the subsets of inputs and
breaks the overall symmetry of the circuit.

For example, the final Carry (C1) = A1B1 + [A0.B0 + Cin(A0⊕B0)] (A1⊕B1) expressed in terms of
the least significant bits/initial input values tend to not obey the concept of full symmetry.
For an example input (A1,B1,A0,B0) = (0,1,0,0) [Cin has been dropped for the example
purpose] would give us Sum (S0) = 0, Carry (C0) = 0, Sum(S1) = 1 and final Carry (Cout) = 0.
According to the concept of symmetry in Boolean functions, changing the order of input
variables should still give the same result. This property does not hold good when we
permute the input combinations by providing (0,0,1,0) as the inputs. This input combination
generates Sum (S0) = 1, Carry (C0) = 1, Sum(S1) = 1 and final Carry (Cout) = 1.

3.4 Introducing Partial Symmetry and Testing for Partial Symmetry

Even though we observed that complete symmetry gets violated in the case of a 2-bit Full
Adder, we can observe partial symmetry in function at different parts of the circuit. Partially
symmetric function can be defined as a function whose subsets of inputs exhibit symmetry
internally but show asymmetry when it interacts with other subsets.

The example provided in the previous subsection contains two partially symmetric subsets
(A1B1) [most significant bits] and (A0B0) [least significant bits] where the inputs are
symmetric among themselves but not between each other. This can be verified by just
permuting the input values within the subset. For example, inputs (A1,B1,A0,B0) can be tested
for partial symmetry if we permute the input values within the same subset (A1B1) to be
(0,1,0,0) and (1,0,0,0,) which would give us Sum (S0) = 0, Carry (C0) = 0, Sum(S1) = 1 and final
Carry (Cout) = 0. This holds true for the other subset (A0B0) as well.

If there is no scope for full symmetry in the Boolean functions for which the sufficient
number of checks would be (n+1) for an ‘n’ input variable function, we can still keep the
number of tests that could be performed significantly lower by checking for the existence of
partial symmetry in the circuit. The number of tests required to be deemed sufficient can be
formulated as (n1 + 1) x (n2 + 1) x x (nM +1) number of test cases where n1, n2, nM

represents the number of inputs present inside partially symmetric subsets and M
represents the number of partial subsets present.

For a 2-bit adder which showcased partial symmetry, we can observe two partially
symmetric subsets where n1 = 3 and n2 = 2. The minimum number of sufficient test cases
that could be performed considering partial symmetry would be (3+1) x(2+1) = 12 tests
which is a drastic reduction in number compared to the total 32 combinations that had to
be checked if tested exhaustively.

4. CONCLUSIONS:

 In this research paper, it is proved that for testing a 1-bit/N-bit full adder,
only a small number of input { 0,1} combinations (from the truth table) can be utilized to test if
such a combinational circuit is functioning properly. The results are currently generalized to other
interesting combinational cicuits

REFERENCE:

1. M. Morris Mano,”Computer System Architecture,” Pearson Publishers, Third Edition, 2007

