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Abstract—This paper explores methods for detecting 

suspicious cryptocurrency transactions associated with money 

laundering, leveraging advanced AI algorithms. The study 

introduces a multi-model framework combining Generative 

Adversarial Networks (GANs), LSTM, Autoencoder-Based 

Anomaly Detection Model (ABAD), and other algorithms to 

address challenges like sample imbalance and noisy data. 

Graph-based feature engineering and embedding methods are 

utilized to construct transaction information graphs and extract 

meaningful patterns. The results demonstrate that the ensemble 

learning approach significantly outperforms individual models 

and traditional rule-based systems in detecting suspicious 

transactions. Despite its success, challenges such as imbalanced 

datasets, noise, and limited relational features remain. Future 

research is suggested to enhance model performance through 

graph neural networks and complex network-based methods. 

This work underscores the scalability and adaptability of 

machine learning models for addressing the evolving complexities 

of cryptocurrency money laundering. 

Keywords- ensemble learning; cryptocurrency; money 

laundering; deep learning; AI safety. 

I.  INTRODUCTION 

Cryptocurrency, a form of digital asset derived from 
block-chain technology, is characterized by decentralization 
and anonymity. These features give cryptocurrency certain 
advantages, such as reducing transaction costs and improving 
transaction efficiency. However, these same features are 
exploited by criminals who use cryptocurrency as a tool for 
money laundering. 

Currently, money laundering through blockchain typically 
occurs in three ways: (1) Centralized Exchange Liquidity: 
Some criminals use centralized exchanges to convert 
cryptocurrencies into fiat. However, this channel poses a risk of 
identity exposure, leading to the emergence of over-the-counter 
brokers that specialize in laundering funds. These brokers 
leverage their connections with exchanges to clean illicit 
cryptocurrencies. (2) Mixing Services: Money laundering is 
also conducted via specialized mixing services. These services 
aggregate and separate multiple unrelated transactions, creating 
long chains of complex transactions to obscure the source of 
the cryptocurrency. After the mixing process, the cleaned 

cryptocurrency is typically converted into fiat through 
centralized exchanges or OTC brokers, a common method of 
laundering. (3) Emerging Platforms: New decentralized 
platforms such as Non-Fungible Tokens (NFTs) and 
Decentralized Finance (DeFi) have created new channels for 
money laundering. 

II. LITERATURE REVIEW 

Among these methods, blockchain centralized exchanges’ 
internal data, such as trading data and Know Your Customer 
(KYC) identity information, are commercially confidential [1]. 
Therefore, research on anti-money laundering (AML) in 
blockchain exchanges primarily focuses on public transaction 
records from the blockchain that are relatively easier to access 
[2-4]. 

In response, the dataset created by MIT's Weber and the 
blockchain data analytics company Elliptic is currently the 
largest publicly available dataset for blockchain fraud. They 
built an AML dataset based on known blockchain exchange 
addresses and publicly disclosed illegal money laundering 
addresses from the internet, and used this dataset to conduct 
research on exchange-based anti-money laundering [5]. 

However, Hu pointed out that the Elliptic dataset does not 
provide the real labeling process or exact feature information, 
making it difficult for algorithms to function effectively on 
other datasets [6]. Hu collected Bitcoin wallet addresses 
associated with money laundering services from online 
resources like WalletExplorer as labeled data. He extracted 
deepwalk and node2vec embedding features, along with 14 
types of transaction graph statistics, using Adaboost as the base 
classifier to train multiple models, achieving good results. 
However, model performance is impacted by class imbalance, 
and the classification model only works effectively when the 
number of fraud labels reaches a certain threshold [7-11]. 

Furthermore, Oliveira proposed a graph construction 
technique based on illegal nodes. This method can extract new 
structural features, thus ameliorating Weber’s work [12-16]. 
Experimental results show that this technique can yield an 
improvement of over 5% (from 91% to 97%) compared to the 
original features [17-19]. 



 

While these methods show some improvements, they still 
cannot fully address issues such as adaptability across different 
samples, accuracy with small datasets, and performance when 
datasets are rough[20-21]. Moreover, since money laundering 
techniques are highly diverse, the extent to which datasets align 
with the current real-world distribution is a critical 
consideration for practical applications[22]. 

This paper integrates multiple models to overcome issues 
like small sample sizes, including Random Forests, which 
perform well on noisy data, and Support Vector Machines, 
which are stable on small samples, to explore money 
laundering behaviors in cryptocurrency[23]. 

III. DATA 

A. Data Sources 

This paper classifies known data sources into three 
categories based on their functionality (as shown in Figure 1, 
with different data compositions): (1) On-chain transaction data, 
(2) Off-chain behavior data, (3) Publicly labeled fraud behavior 
data. Among them, the data sources of categories (1) and (2) 
are assumed to be unlabeled.  

Specifically, on-chain transaction data: this refers to the 
blockchain transaction details data, contracts deployed on the 
chain, and their log data after being authenticated and recorded 
on the blockchain. Off-chain behavior data: this refers to data 
that occurs off-chain (usually on the Web) and contains clues 
about blockchain fraud activities. In existing research, this data 
source includes: a. Social media sites, such as Bitcoin forums 
and Twitter; b. Whitepaper publication sites, like Icobench; c. 
Exchange transaction data, such as Bitfinex and Mt.Gox. Fraud 
Behavior labeled data: this consists of data labeled as 
blockchain accounts, transactions, and contracts through 
complaint reports, case disclosures, online collection, and 
manual verification. Sources include: a. Websites disclosing 
illegal blockchain addresses, such as Etherscan and 
Cryptoscamdb; b. Websites disclosing real-world identities, 
such as public datasets related to WalletExplorer. 

B. Public Datasets 

Table 1 organizes the known public datasets. Based on 

existing identification methods, their data strategies are broadly 

divided into two categories: (1) transaction-based: Researchers 

primarily understand the behavior logic of both parties in 

blockchain transactions by analyzing transaction records. They 

aim to identify the transaction characteristics of target 

behaviors and thereby discover and identify transactions, 

accounts, and contracts associated with these target behaviors. 

(2) contract-based: The code logic in contracts provides a solid 

foundation for identifying fraud behaviors and ensuring their 

verifiability. Preemptively detecting and discovering 

vulnerabilities or traps in contract code can serve as a warning 

system for blockchain users. Table 1 lists the behaviors covered 

by datasets using contract-based strategies, including Ponzi 

schemes. 

TABLE 1 PUBLIC DATASETS 

Data Open Datasets Total Illegal 

strategy Address/ 

Contract 

Count 

Address 

/Contract 

Count 

 
Elliptic 203769 4545 

 
BitcoinMixing 12360 --- 

Trade_base Xblock-Phishing 2973382 1157 

 
Bitcoin-Ponzi 32 32 

  Btcransomware 4027 --- 

 
Contract-Ponzi 1382 131 

Contract_base SADPonzi 1528 133 

  HoneyBadger 857 323 

C. Data Preprocessing and Feature Engineering 

During exploratory analysis of the sample data, issues such 
as abnormal field values, incorrect values, missing data, and 
inconsistent data standards were found in the customer data, 
transaction data, behavioral data, and asset datasets. Since 
handling data anomalies is an engineering problem, the data 
quality issues from different source systems were addressed 
during the data ingestion process, following the standards and 
specifications for data warehousing. 

Besides, the processing of blockchain abnormal transaction 
behavior data involves feature engineering preprocessing based 
on specific transaction rules. This includes processing data 
related to addresses, transactions, users, and trades. Among 
these, the transaction model serves as the underlying logic for 
constructing transaction information graphs (refer to TABLE 2 
below). Two mainstream transaction models exist across 
various blockchain platforms: (1) The UTXO (Unspent 
Transaction Output) model, represented by Bitcoin, which is 
similar to the change-making model in real-world transactions. 
(2) The Account-based model, represented by Ethereum, which 
is akin to the bank account transaction model in the real world. 

TABLE 2 DATA PREPROCESSING 

 

D. Explanation of Different Components 

Below is the construction of transaction information graphs. 
The address graph is used to describe the interaction 
information of digital currencies between addresses. The 
transaction graph represents the transaction flow of digital 
currency. The user graph shows digital currency flow between 
blockchain users. The transaction subgraph is a local graph 

Fraud Detection Model 

Transaction Graph Features and Extraction 
Graph statistical Graph Embedding 

Transaction Graph Construction 
Transactions Addresses 

Address 
Transactions  

User Graph 
Transaction 
Subgraph 

Raw Data 
Off-chain Data 

On-chain Transaction 
Data 

Illegal Money  Laundering 
Detection 



 

within the full transaction graph, used to filter specific 
behavioral patterns within the transaction graph.  

 
Figure 1 Relationships between transaction graphs 

Figure 1 illustrates the relationships between the various 
transaction information graphs. Among them, the address graph 
and transaction graph are the most fundamental transaction 
information graphs, providing the relationship between 
addresses and transactions for the address-transaction graph.  

E. Interaction Rules of Each Component 

The Address Graph 𝐺 = (𝐴, 𝐸) is used to represent the 
interaction patterns of digital currencies between addresses 𝐴 
and 𝐸; the Transaction Graph 𝐺 = (𝑇, 𝐸) is used to represent 
the digital currency flow between transactions over time. The 
vertex set 𝑇  in graph 𝐺  represents the set of blockchain 
transactions, where each vertex 𝑡  represents a blockchain 
transaction, identified by its transaction hash.  

The Address-Transaction Graph 𝐺 = (𝑇, 𝐴, 𝐸) introduces 
addresses into the transaction graph, making it an expanded 
form of the transaction graph. It describes the binary 
relationship between addresses and transactions. 𝐺  is a 
heterogeneous graph containing two types of nodes: 𝑇 and 𝐴. 
𝑇 denotes the set of transaction nodes. Each 𝑡 represents a 
blockchain transaction identified by its transaction hash. 𝐴 is 
the set of address nodes, where every node a represents a 
blockchain address. The set 𝐸 represents the directed edge set 
of graphs 𝐺. The weight on an edge e can represent the amount 
of cryptocurrency transferred into an input address or the 
amount received by an output address, as following Figure 2. 

 

Figure 2 Trade construction process 
User Graph 𝐺 = (𝑈, 𝐸) is used to represent the flow of 

digital currency between block-chain users. 𝑈 represents the 

set of user nodes in graph 𝐺, and 𝐸 is the edge set, where 
each vertex u represents a blockchain user. The users here are 
typically abstracted from blockchain addresses using clustering 
or de-anonymization methods.  

Transaction Subgraph: Common types of subgraphs include 
N-ego graphs and K-motifs graphs. Subgraph construction is 
typically centered around a node.  

F. Feature Engineering 

Building a good feature engineering framework on 
transaction graph structures is an essential step in downstream 
blockchain fraud detection algorithms. Among these, graph 
statistical features (attribute features) and embedding feature 
methods are two commonly used approaches in feature 
engineering. Graph Statistical Features are derived from the 
graph’s topological structure. In blockchain fraud detection, 
graph statistical features introduce additional transaction 
attributes and behavior metrics, such as address activity days, 
transaction cycle, and the number of sending addresses. Graph 
embedding transforms the original graph data into a 
low-dimensional space while preserving key information, 
thereby improving the performance of subsequent tasks like 
node classification, relationship prediction, and node clustering. 
Graph embedding techniques can be further broadly divided 
into two types: node embedding and whole-graph embedding. 
The difference between the two is that node embedding learns 
a representation for a single node, as Table 3 below: 

TABLE 3 COMMON GRAPH EMBEDDING TECHNIQUES 

          

Node Embedding 
GCN, Deep Walk, Random 

Walk, Skip-gram, node2vec 

Subgraph Embedding 

 

graph2vec, diffpool 

    

     
IV. MODEL 

Among the classical machine learning models widely used 
today, some models tend to reduce prediction variance, while 
others aim to reduce bias. Therefore, to mitigate the 
"bias-variance" trade-off, this paper adopts an ensemble 
learning approach to design a money laundering detection 
model for cryptocurrency transactions. The framework for its 
implementation is as follows. 

A. Base Classifier Selection 

Weak classifiers, such as Support Vector Machines (SVM), 
Random Forests (RF), GBDT, LSTM, GRU, Generative 
Adversarial Networks (GANs) and Autoencoder-Based 
Anomaly Detection Model (ABAD) often function as base 
classifiers of ensemble learning. To apply ensemble learning to 
suspicious transaction detection in cryptocurrency, this study 
measures the correlation of base classifiers' results using the 
Pearson correlation coefficient, ensuring that the selected base 
classifiers not only have high-performance evaluation metrics 
but also significant diversity. 

However, in the context of cryptocurrency transaction 
detection where suspicious transactions are extremely 



 

imbalanced, most sample prediction probabilities are very close 
to each other. Therefore, the suspicious transaction detection 
problem can be further simplified into a binary classification 
problem. 

D = {(x1, y2), (x2, y2), (x3, y3), … … , (xm, ym)} is a dataset 
for the binary classification task 𝑦𝑖 ∈ {−1,1}. 𝑎  represents 

the number of samples predicted as positive class. 𝑎， 𝑏,  𝑐, 

and 𝑑  satisfy the equation, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑚 . The 
correlation measure is 

𝜌𝑖𝑗 =  
𝑎𝑏 − 𝑏𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑐 + 𝑏)(𝑏 + 𝑑)
 

The range of 𝜌𝑖𝑗  is [−1, 1]. If ℎ𝑖 is independent of ℎ𝑗, 

𝜌𝑖𝑗  is 0. If there exists a positive correlation between ℎ𝑖 and  

ℎ𝑗, 𝜌𝑖𝑗  is positive. Otherwise, 𝜌𝑖𝑗  is negative. 

B. Ensemble Learning Model Construction 

Derived from the method above, the base classifiers are 

selected, and the Bagging method is used for model training. 

Figure 3 shows the training process. 

 
Figure 3 Training process ensemble learning 

C. Assessment Approaches 

TABLE 4 PREDICTION CLASSIFICATION CONFUSION MATRIX 

 

Results 
Predicted 

1 0 

1 PT NF 

0 PF NT 

 

In table 4, parameters are explained as below. PT, the 
model correctly predicts the transaction as a potentially illicit 
money laundering activity. PF, the model falsely predicts the 
transaction as a potentially illicit money laundering activity. 
NT, the model correctly predicts the transaction as a regular 
transaction. NF, the model falsely predicts the transaction as a 
regular transaction. 

Recall denotes the percentage of accurately predicted 
money laundering samples out of the total actual money 
laundering samples. The F1-score is a comprehensive 
evaluation of both precision and recall. Kolmogorov-Smirnov 
(KS) Statistic quantifies the greatest disparity between the 
cumulative distributions of suspicious and normal transaction 
samples. AUC reflects the classifier's ability to rank samples.  

D. Results 

In the scenario of illicit transaction detection for anti-money 
laundering, the imbalance between normal and suspicious 
transactions is significant, making it a typical case of sample 
imbalance. The Area Under the Receiver Operating 
Characteristic Curve (AUC) is used as the evaluation metric for 
base classifiers. AUC reflects the classifier's ability to rank 
samples, and even in imbalanced class scenarios, it can 
objectively indicate the performance of a classifier. Therefore, 
considering the characteristics of anti-money laundering data in 
cryptocurrency transactions, AUC is selected as an 
performance measure for base model performance in this study. 

Following the base model selection process, the models 
SVM, RF, GBDT, LSTM, GRU, GANs and ABAD were 
selected as base classifiers. These classifiers were trained on 
the training dataset. Table 5 shows the training results.. 

TABLE 5 RESULTS OF 7 BASE-MODELS 

Model   AUC 

GANs 

 

0.8558 

ABAD 0.8273 

GRU 

 

0.8159 

LSTM 

 

0.7748 

SVM 

 

0.7541 

RF 0.7400 

GBDT 0.7319 

As the complexity of models increases, the results improve; 
and it can be found that unsupervised model works better. This 
may be driven by the fact: more than half of datasets are not 
labelled, making unsupervised learning fits better. Therefore, 
GANs, ABAD, GRU and LSTM were chosen as the base 
classifiers for the ensemble learning model, which was 
developed using the Bagging approach. To verify the 
performance of the ensemble learning model proposed in this 
paper on the cryptocurrency anti-money laundering dataset, 
GANs, ABAD, GRU, and LSTM were separately executed on 
the validation set, and their prediction outcomes were 
compared. 

To substantiate the effectiveness of the ensemble model 
built in this paper, the results are shown in Figure 4. Compared 
to rule-based models, which fail to predict money laundering 
samples, machine learning models are indeed better at 
identifying the correspondence between money laundering 
features and labels, and they are proved to be effective on 
real-world datasets. 



 

 

Figure 4 Performance in test datasets 

 
V. Conclusions 

Single machine learning models can, to some extent, 
identify suspicious money laundering transactions in 
cryptocurrency transactions, but ensemble learning models that 
integrate multiple weak classifiers significantly outperform 
individual models. Additionally, this model is scalable and 
allows flexible adjustment of base models to suit different 
datasets. From the experimental process and result analysis, 
there are still the following issues with this approach: In the 
experimental data used in this study, suspicious money 
laundering transaction samples are very rare, and the 
performance of individual models is poor. Second, during the 
feature engineering phase of this experiment, features were 
designed solely from a single customer perspective, without 
considering the relationship features between customers or the 
transmission of money laundering risks across relational 
networks. For further research on anti-money laundering 
modeling, it would be beneficial to explore methods based on 
complex networks or graph neural networks to recognize 
suspicious illicit financial activity transactions.  
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