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Abstract - The paper describes nonstationary 

problems of thermodynamical and hydrodynamical 

processes whose mass change is used in heterogeneous media 

for an arbitrary geometry of thermal, filtrational or diffusive 

flow described in appropriate terminologies by the system of 

parabolic type differential equations. 
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I. INTRODUCTION. 

Using the Laplace integral transformation in time 

variable, its main properties and the ideas of expansion of 

fractional rational functions in infinite series by the roots 

of their denominators, we suggest methods for 

constructing exact solutions of problems of nonstationary 

processes in heterogeneous continuum described by the 

system of Barenblatt-Zheltov differential equations. 

Applicability of the obtained methods is shown on 

solutions of specific problems of thermodynamics and 

hydrodynamics in these media. 

II. STATEMENT AND FORMULATION OF 

THE PROBLEM. 

Nonstationary problems of thermodynamical and 

hydrodynamical processes of mass exchange in 

heterogeneous media for arbitrary geometry of thermal, 

filtrational or diffusive flow are described in appropriate 

terminologies by the system of parabolic type differential 

equations 

1

𝑘0

𝜕2𝜙1

𝜕𝜉2
+

𝜎

𝜉

𝜕𝜙1

𝜕𝜉
+ 𝜆(𝜙2 − 𝜙1) − (1 − 𝜔)

𝜕𝜙1

𝜕𝜏
= 0,  (1) 

𝜕2𝜙2

𝜕𝜉2
+

𝜎

𝜉

𝜕𝜙2

𝜕𝜉
+ 𝜆(𝜙1 − 𝜙2) − 𝜔

𝜕𝜙2

𝜕𝜏
= 0, 

where 𝜙𝑖(𝜉; 𝜏), (𝑖 = 1,2) are the desired generalized 

functions that describe the change of the process at 

arbitrary points 𝜉 of mutually connected media 1 and 2 at 

arbitrary moment of time 𝜏; 𝜔 and 𝜆 are constant 

parameters [1], that characterize the medium under 

consideration, the values 𝜎 = 0,1,2 characterize the flow 

geometry and correspond to linear, plane radial and 

centrally-symmetric change of the process 

𝜔 =
𝛽2
∗

𝛽1
∗ + 𝛽2

∗ , 1 − 𝜔 =
𝛽1
∗

𝛽1
∗ + 𝛽2

∗ 

Substituting the expression of the function 𝜙1(𝜉, 𝜏) 
from the second equation to the first one and neglecting 

the quantity 
1

𝛼𝑅𝑐
2 𝛻

4𝜙2, we can represent the given system 

in the form (index 2 is omitted) 

1 + 𝑘0
𝑘0

𝛻2𝜙 +

𝜔
𝑘0

+ 1 − 𝜔

𝜆

𝜕

𝜕𝜏
(𝛻2𝜙) − 

−
𝜔(1−𝜔)

𝜆

𝜕2𝜙

𝜕𝜏2
−

𝜕𝜙

𝜕𝜏
=

𝑘0

𝜆
𝛻4𝜙,                    (2) 

𝛻2 =
𝜕2

𝜕𝜉2
+
𝜎

𝜉

𝜕

𝜕𝜉
. 

Many native and foreign researchers are engaged 

in the solution of important thermodynamical, 

hydrodynamical and gasdynamical problems for the given 

system of equations, the results of which are in the authors' 

monographs [1-5]. It should be noted that application of 

integral transformations to specific problems for the 

system (1) leads to mathematical obstacles difficult to 

overcome and the researcher use simplified special cases 

[6] to get over them. Such an approach leads to 

approximate solutions of the considered problems suitable 

for limited interval of change of variables and further 

become a subject of discussions. 

III. MAIN PART. 

Application of Laplace integral transform with a 

transformation parameter s  both to the system (1) and to 

the equation (2) lead them to the second order differential 

equation   

1 + 𝑘0
𝑘0

𝛻2𝜓 +
1 − 𝜔 +

𝜔
𝑘0

𝜆
𝛻[𝑠𝜓 − 𝜓(𝜉; 0)] − 

−
𝜔(1 − 𝜔)

𝜆
[𝑠2𝜓 − 𝑠𝜓(𝜉; 0) −

𝜕

𝜕𝜏
𝜓(𝜉; 0)] − 

−𝑠𝜓 + 𝜓(𝜉; 0) = 0.                           (3) 

whose general solution with, regard to the initial 

condition 

𝜓𝑖(𝜉, 𝑠) = 𝐴𝑖𝜉
𝜈𝐼𝜈 (𝜉√𝑆(𝑠)) + 𝐵𝑖𝜉

𝜈𝐾𝜈 (𝜉√𝑆(𝑠)),  (4) 

𝜈 =
1−𝜎

2
, 𝑆(𝑠) = 𝑠

𝜔(1−𝜔)𝑠+𝜆

(1−𝜔+
𝜔

𝑘0
)𝑠+𝜆

2+𝑘0
𝑘0

.           (5) 

𝐼𝜈(𝑧) and 𝐾𝜈(𝑧) are Bessel functions from the first and 

second kinds imaginary argument of order 𝜈, 𝐴 and 𝐵 are 

integration constants dependent on the transformation 

parameter. 

For 𝜔 = 1 or 𝜆 → ∞ equations (1) and (2) pass to 

the known Fourier equation 
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𝜕2𝜙

𝜕𝜉2
+

𝜎

𝜉

𝜕𝜙

𝜕𝜉
−

𝜕𝜙

𝜕𝜏
= 0, (𝜎 = 0; 1; 2)        (6) 

and from (4) due to the validity of the relation  

𝑙𝑖𝑚
𝑘0→∞

𝑆(𝑠) = 𝑠  for 𝜔 = 1.                      (7) 

we get a general solution of (6) of the form 

𝜓(𝜉, 𝜈) = 𝐴𝜉𝜈𝐼𝜈(𝜉√𝑠) + 𝐵𝜉𝜈𝐾𝜈(𝜉√𝑠).      (8) 

Comparison of solutions of (5) and (8) show that they 

differ between themselves only by functional dependence 

relative to the transformation parameter s  in the 

arguments of functions included in these general 

solutions. Hence it follows that for the known solution of 

the equation (6) in the Laplace transformation under the 

certain boundary conditions 

[𝜓(𝜉, 𝑠)]𝜔=1
𝜆=∞

= 𝜙(𝑠)𝐹(𝜉; 𝑠)             (9) 

the appropriate solution of equations (1) and (2) 

corresponding to it, under the same boundary conditions 

can be represented in the form  

𝜓(𝜉, 𝑠) = 𝜙(𝑠)𝐹[𝜉, 𝑆(𝑠)],                 (10) 

where 𝜙(𝑠) is the Laplace transform of a function given 

on the medium impact boundary?  

Depending on the features of the function 

𝐹[𝜉, 𝑆(𝑠)] below we give methods for passing from the 

image (10) to the original. 

Application of generalized A.M.Efros 

multiplication theorem. Due to complicated functional 

dependence of 𝑆 on 𝑠 for realizing the passage from the 

images of the form (10) to their originals it is purposeful 

to use generalized A.M.Erfos multiplication theorem [7], 

saying (briefly) that  

𝜙(𝑠)𝐹[𝜉; 𝑆(𝑠)] =
⋅
⋅
∫ 𝑓∗(𝜉; 𝜃)𝑔(𝜏; 𝜃)𝑑𝜃
∞

0
     (11) 

where 

𝑓∗(𝜉, 𝜏) =
.
.
𝐹(𝜉, 𝑠) ≡

1

𝜙(𝑠)
[𝜓(𝜉, 𝑠)]𝜔=1,     (12) 

𝑔(𝜏, 𝜃) = 𝜙(𝑠) 𝑒𝑥𝑝[−𝜃𝑆(𝑠)].                 (13) 

To apply formulas (11) to the image (10) we represent in 

the form 

𝜓(𝜉, 𝑠) = 𝑠𝐺(𝑠)𝜙(𝑠)
𝐹[𝜉;𝑆(𝑠)]

𝑆(𝑠)
,                (14) 

𝐺(𝑠) ≡
𝑆(𝑠)

𝑠
.                          (15) 

Let 

𝑓(𝜉; 𝜏) =
.
. 1

𝑠
𝐹(𝜉; 𝑠)                     (16) 

be the corresponding known solution of the problem for 

the Fourier equation (6). Then for finding the function 

𝑔(𝜏; 𝜃) due to (13), we represent it allowing for (14) for 

𝜙(𝑠) =
1

𝑠
 (given constant consumption for 𝜉 = 1) in the 

form 

𝑔(𝜏, 𝜃) =
.
.
𝐺(𝑠) 𝑒𝑥𝑝[−𝜃𝑆(𝑠)] = 

= (𝜔𝜀2 + 𝜀2
𝛬1 −𝜔𝜀1𝛬2
𝑠 + 𝜀1𝛬2

) × 

× exp⁡[−𝜔𝜀2𝑠𝜃 − 𝛬2(1 − 𝜀1𝜀2𝜔)𝜃 + 

+𝜀1𝛬2(1 − 𝜔𝜀1𝜀2)
𝜃

𝑠+𝜀1𝛬2
],                     (17) 

𝜀1 =
1 + 𝑘0
𝑘0

, 𝜀2 =
1 − 𝜔

1 − 𝜔 +
𝜔
𝑘0

, 

𝛬2 =
𝜆

1 − 𝜔 +
𝜔
𝑘0

, 𝛬1 =
𝜆

1 − 𝜔
. 

Realizing the passage to the original in (17) and 

substituting the found expression in (11), we can represent 

the solution of the problem in the form 

𝜙2(𝜉; 𝜏) = 𝜀2 𝑒𝑥𝑝(−𝜀1𝛬2𝜏) × 

×∫ 𝑓(𝜉; 𝜃) 𝑒𝑥𝑝(−𝑐𝜃) ×
∞

0

 

× {𝜔√
𝜀1𝑐𝜃

𝜏
𝐼1(2√𝜀1𝑐𝜃𝜏) + 𝜔 + 𝐵𝐼0(2√𝜀1𝑐𝜃𝜏)} × 

× 𝐻(𝜏 − 𝜔𝜀2𝜃)𝑑𝜃                              (18) 

𝐵 = 𝛬1 −𝜔𝜀1𝛬2, 𝑐 = 𝛬2(1 − 𝜀1𝜀2𝜔), 

𝐻(𝜏 − 𝑥) = {
0, 𝜏 < 𝑥
1, 𝜏 > 𝑥

.                     (19) 

Formula (18) is the exact solution of the problem for a 

heterogeneous medium, where the exact solution for the 

homogeneous medium 𝜔 = 1, 𝑘0 = ∞was used. 

Accepting other expressions for the functions 𝐺(𝑠) 
and 𝜙(𝑠), from (10) we can find various analytic 

expressions for the function 𝑔(𝜏; 𝜃) and by the same taken 

various forms of exact solutions to the problem. So, for 

example, accepting 

𝑓∗(𝜉, 𝜏) = 𝐹(𝜉, 𝑠), 𝐺(𝑠) = 𝜙(𝑠) =
1

𝑠
    (20) 

we must find the original of the image 

𝑔(𝜏, 𝜃) =
.
. 1

𝑠
𝑒𝑥𝑝[−𝜃𝑆(𝑠)] =

.

.
𝜂(𝜏 − 𝜔𝜃) 𝑒𝑥𝑝(−𝛬𝜃) + 

+𝑒−𝛬𝜃 ∫ 𝑒𝑥𝑝(−𝛬𝑧) 𝐼1[𝑍(𝑧)]√
𝜆𝛬

𝑧
𝑑𝑧,

(𝜏−𝜔𝜃)𝜂(𝜏−𝜔𝜃)

0
  (21) 

𝜂(𝜏 − 𝑥) = {
1, 𝜏 < 𝑥
0, 𝜏 > 𝑥

, 𝑍(𝑧) = 2𝜆√
𝑧

1 − 𝜔
. 

Allowing for (21) and (11) we can obtain the following 

exact solution 

𝜓(𝜉; 𝜏) = ∫ 𝑓𝜃 (𝜉; 𝜃) 𝑒𝑥𝑝(−𝛬𝜃) 𝑑𝜃 +
𝜏 𝜔⁄

0

 

+
𝜆

√1 − 𝜔
∫ 𝑓𝜃 (𝜉; 𝜃) 𝑒𝑥𝑝(−𝛬𝜃) 𝑑𝜃

𝜏 𝜔⁄

0

× 

× ∫ 𝑒𝑥𝑝(−𝛬𝑧) 𝐼1[𝑍(𝑧)]
𝑑𝑧

√𝑧

(𝜏−𝜔𝜃)𝜂(𝜏−𝜔𝜃)

0
,      (22) 

where we used time derivative of the exact solution for a 

homogeneous medium. In our previous papers we have 

obtained another form of formulas (18) and (22), more 

exactly 

𝜓(𝜉; 𝜏) = 𝑓 (𝜉;
𝜏

𝜔
) − 𝜆 × 



×∫ 𝑓𝜃 (𝜉; 𝜃) 𝑒𝑥𝑝(−𝛬(𝜏 − 𝜔𝜃)) 𝑑𝜃

𝜏
𝜔
𝜂(𝜏−𝜔𝜃)

0

× 

× ∫ 𝑒𝑥𝑝(−𝜆𝑧) 𝐼0[𝑍(𝑧)]𝑑𝑧
𝜃

0
                (23) 

taking into account both 𝑓(𝜉; 𝜃) and 𝑓𝜃
/(𝜉; 𝜃). 

IV. CONCLUSION. 

All three formulas (18), (22) and (23) are 

equivalent and satisfy the zero-initial condition. To 

illustrate that they satisfy also boundary conditions, it is 

necessary to consider a specific problem from theory of 

hydrodynamics. 

Example 1. A heterogeneous circular cross section 

cylinder with a rather long length is bounded from interior 

with the radius 𝑟 = 𝑅𝑐, on which constant heat flow 𝑞 is 

given for zero initial temperature. It is required to 

determine distribution of temperature in time at an 

arbitrary point of the body. 

In terms of hydrodynamics, the formulated 

problem corresponds to the development of cracked-

porous formation of rather long length in the unresolved 

state with a well performed according the degree of 

opening at a constant flow rate. 

The solution of the corresponding problem for a 

homogeneous medium in the Laplace transform has the 

form: 

𝑓(𝜉; 𝜏) =
⋅
⋅ 𝐾0(𝜉√𝑠)

𝑆(𝑠)𝐾1(√𝑠)
≡
1

𝑠
𝐹(𝜉; 𝑠) = 

=
1

2
∫

𝐽1(𝑢)𝑌0(𝜉𝑢) − 𝑌1(𝑢)𝐽0(𝜉𝑢)

𝐽1
2(𝑢) + 𝑌1

2(𝑢)
×

∞

0

 

× [1 − 𝑒𝑥𝑝(−𝑢2𝜏)]
𝑑𝑢

𝑢2
                    (24) 

𝜉 =
𝑟

𝑅𝑐
, 𝜏 =

𝑥𝑡

𝑅𝑐
2
, 

𝑓(𝜉; 𝜏) =
2𝜋𝑘ℎ

𝜇𝑞
[𝑃0 − 𝑃(𝜉, 𝜏)]             (25) 

𝐽𝑛(𝑥), 𝑌𝑛(𝑥) is the Bessel function of the first and second 

kinds real argument of order 𝑛, 𝑃0 and 𝑃(𝜉, 𝜏) is the initial 

and current pressure in the formation, 𝑥 is a piezo 

conductivity coefficient, 𝑟 and 𝑡 is a radial coordinate and 

time, respectively. 

Using the formulas (18) and (24) corresponding 

solution for a cracked-porous formation in denotations  

𝜔 =
𝛽2
∗

𝛽1
∗+𝛽2

∗, 𝜆 = 𝛼𝑅𝑐
2 𝑘1

𝑘2
, 𝜏 =

𝑘2𝑡

𝜇𝑅𝑐
2(𝛽1

∗+𝛽2
∗)

          (26) 

it is easy to represent in the form 

𝜓(𝜉; 𝜏) =
2

𝜋
× 

×∫ {𝜔 + 𝜆𝐼0[𝑢(𝜏, 𝜃)] + 𝑣(𝜏, 𝜃)𝐼1[𝑢(𝜏, 𝜃)]} ×

𝜏
𝜔

0

 

× 𝑒𝑥𝑝[−𝛬𝜏 − (1 − 𝜉𝜔)𝛬𝜃]𝑑𝜃 × 

× ∫
𝐽1(𝑢)𝑌0(𝜉𝑢)−𝑌1(𝑢)𝐽0(𝜉𝑢)

𝐽1
2(𝑢)+𝑌1

2(𝑢)
[1 − 𝑒𝑥𝑝(−𝑢2𝜃)]

𝑑𝑢

𝑢2

∞

0
.   (27) 

Example 2. Retain the conditions of the previous 

problem having accepted 𝜎 = 2 the central symmetric 

flow and replace the condition of unboundedness of the 

formation by the condition of the availability of a feed 

contour on the external semi-spherical surface of the 

formation of radius 𝜉 = 𝜉0. 

The solution of the given problem for a 

homogeneous medium has the form 

𝜓(𝜉, 𝜏) =
.
. 1

𝜉𝑆

𝑠ℎ(𝜉0 − 𝜉)√𝑆

√𝑆(𝑠)𝑐ℎ(𝜉0 − 1)√𝑠 + 𝑠ℎ(𝜉0 − 1)√𝑆
≡ 

≡
1

𝜉𝑆
𝐹(𝜉, 𝑠) =

.

. 𝜉0 − 𝜉

𝜉0 − 1
+
2

𝜉
(𝜉0 − 1)2 × 

× ∑
1

𝛼𝑚 𝑐𝑜𝑠 𝛼𝑚

∞
𝑚=1 ⋅

𝑠𝑖𝑛 𝛼𝑚
𝜉0−𝜉

𝜉0−1

𝛼𝑚
2 +𝜉0(𝜉0−1)

𝑒𝑥𝑝 [− (
𝛼𝑚

𝜉0−1
)
2

𝜏],   (28) 

where𝛼𝑚 are the roots of the equation? 

𝑡𝑔𝛼 + 𝛼(𝜉0 − 1)−1 = 0.                   (29) 

Consequently, according to (16) from (28) we can write 

out the appropriate Laplace transform for a heterogeneous 

medium.  

𝜓(𝜉, 𝑆) =
.
. 1

𝜉𝑆
⋅

𝑠ℎ(𝜉0−𝜉)√𝑆(𝑠)

√𝑆(𝑠)𝑐ℎ(𝜉0−1)√𝑆+𝑠ℎ(𝜉0−1)√𝑆(𝑠)
.     (30) 

The following expression is the original of the image (30) 

according to (28)  

𝜓(𝜉, 𝜏) =
2

𝜉
∑ 𝛼𝑚

𝑠𝑖𝑛 𝛼𝑚
𝜉0−𝜉

𝜉0−1

[𝛼𝑚
2 +𝜉0(𝜉0−1)] 𝑐𝑜𝑠 𝛼𝑚

∞
𝑚=1 .     (31) 
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