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Abstract. Software generators that compile and deploy a specification
into a functional information system can help to increase the frequency
of releases in the software process. They achieve this by reducing de-
velopment time and minimizing human-induced errors. However, many
software generators lack support for data migration. This can inhibit a
steady pace of releases, especially for increments that alter the system’s
schema in production. Consequently, schema-changing data migrations
often face challenges, leading developers to resort to manual migration
or employ workarounds.
To address this issue, this paper proposes a foundational approach for
data migration, aiming to generate migration scripts for automating the
migration process. The overarching challenge is preserving the business
semantics of data amidst schema changes. Specifically, this paper tackles
the task of generating a migration script based on the schemas of both
the existing and the desired system, under the condition of zero down-
time. The proposed solution was validated by a prototype demonstrating
its efficacy. Notably, the approach is technology-independent, articulat-
ing systems in terms of invariants, thereby ensuring applicability across
various scenarios. The migration script generator will be implemented in
a software generator named Ampersand.

Keywords: Generative software · Incremental software deployment ·
Data migration · Relation algebra · Ampersand · Schema change · In-
variants · Zero downtime

1 Introduction

In practice, information systems4 may live for many years. After they are built,
they need to be updated regularly to keep up with changing requirements in a
dynamically evolving environment. Schema changes cannot always be avoided
when updating software, so a schema-changing data migration (SCDM) will be

4 In the sequel, the word “system” refers to the phrase “information system”, to simplify
the language a little.
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necessary from time to time. For example, adding or removing a column to a
table in a relational database adds to the complexity of migrating data. Even
worse, if a system invariant changes, some of the existing data in the system may
violate the new invariant. In practice, data migrations typically follow Extract-
Transform-Load (ETL) patterns [16], for which many tools are available. How-
ever, ETL tools typically provide little support for invariants that change, forcing
development teams to write code. In a world where automation of the software
process is resulting in higher productivity, more frequent releases, and better
quality, SCDMs should not stay behind. Roughly half of the DevOps [2] teams
that responded in a worldwide survey in 2023 [7] are deploying software more
frequently than once per day. Obviously, these deployments are mostly updates
of existing systems. The risk and effort of SCDMs explains why these teams
try to avoid schema changes in the first place. Our research aims at automat-
ing SCDMs to make them less risky and less costly, so development teams can
deploy schema changes with zero downtime.

Data migration for other purposes than schema change has been described
in the literature. For instance, if a data migration is done for switching to an-
other platform or to different technology, e.g. [3,19], migration engineers can
and will avoid schema changes and functionality changes to avoid introducing
new errors in an otherwise error-prone migration process. In another example,
Ataei, Khan, and Walkingshaw [1,17] define a migration as a variation between
two data structures. They show how to unify databases with slight variations
by preserving all variations in one comprehensive database. This does not cater
for schema changes, however. Then there are SCDMs in situations without a
schema or an implicit schema, e.g. [6]. Such situations lack the error prevent-
ing power that explicit schemas bring during the development of software. All
errors a schema can prevent at compile time must then be compensated by run-
time checks, which increases the likelyhood of end-users getting error messages.
This requires versioned storage of production data and an overhead in perfor-
mance. That is why this paper focuses on SCDMs for systems with an explicit
schema. The prototypical use case for that is to release updates of information
systems in production, where the semantic integrity of data must be preserved
across schema changes. Another use case is application integration for multiple
dispersed data sources with explicit schemas.

A practical complication in many data migration projects is the presence of
deteriorated data. To clean it up may incur much work. Some of that work must
be done before the migration; some can wait till after the migration. In all cases,
data pollution in an existing system requires careful analysis and planning. We
can capture the automatable part of the data quality problem by regarding it
as a requirement to satisfy semantic constraints. E.g. the constraint that the
combination of street name, house number, postal code, and city occurs in a
registration of valid addresses can be checked automatically. In a formalism like
Ampersand [10,11], which allows us to express such constraints, we can add
constraints for data quality to the schema. This allows us to signal the data
pollution at runtime. Some forms of data pollution will need to remain out of
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scope. An example is when a person has specified a false name without violating
any constraint in the system.

The complexity of data migration has prompted us to develop an approach
first, which we present in this contribution. We have validated the approach by
prototyping because a formal proof of correctness is currently beyond our reach.
This approach perceives an information system as a data set with constraints,
so we can represent invariants (and thus the business semantics) directly as
constraints.

The next section analyzes SCDMs with an eye on zero downtime and data
quality. It sketches the outline of a procedure for SCDMs. Section 3 formalizes
the concepts that we need to define the procedure. Section 4 defines the algoritm
for generating a migration system, to automate SCDMs. Section 5 demonstrates
the prototype of a migration system, which we used to validate our approach
experimentally. For this purpose we have used the language Ampersand because
its syntax and semantics correspond directly to the definitions in section 3.

2 Analysis

This section analyzes information systems qualitatively, to prepare for a formal
treatment in section 3. The current section yields a procedure for migrating data
from one system to another.

2.1 Information Systems

The purpose of an information system is to store and disclose data in a way that
is meaningful to its users. Multiple users, working from different locations and at
different moments, constitute what we will loosely call “the business”. The data
in the system constitutes the collective memory of the business, which relies on
the semantics of the data to draw the right conclusions and carry out their tasks.

Figure 1 depicts the situation before migration. The state of the system is
represented by a data set, typically represented in some form of persistent store
such as a database. An existing application service ingests traffic through an
ingress and persists data in a data set. Our research assumes that the structure
and business semantics are represented in a schema, from which the system is
generated. Actors (both users and computers) are changing the data in a system
continually. Events that the system detects may cause the state to change. To
keep our approach technology independent, we assume that data sets contain
triples. This makes our approach valid for every kind of database that triples can
represent, including SQL databases, object-oriented databases, graph databases,
triple stores, and other no-SQL databases.

We assume that constraints implement the business semantics of the data.
Constraints represent business concerns formally, so they can be checked auto-
matically and can be used to generate software. Some of the constraints require
human intervention, while others require a system to intervene. In this paper,
we distinguish three different kinds of constraints:
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Fig. 1. Anatomy of an information system

1. Blocking invariant
A blocking invariant is a constraint that is always satisfied in a system. It
serves to constrain the data set at runtime. When the data set changes in a
way that violates a blocking invariant, the system produces an error message
and refuses the change.

2. Transactional invariant
A constraint that can is kept satisfied automatically by taking corrective
actions is called a transactional invariant. The system keeps these satisfied
by adding or deleting triples to the dataset, typically using wrapped inside
a classical database transaction to avoid issues with concurrency. As soon as
the data violates a transactional constraint, the system restores it without
human intervention. So, the outside world experiences this as a constraint
that is always satisfied, i.e. an invariant.

3. Business constraint
A business constraint is a constraint that users can violate temporarily until
someone restores it. Example: “An authorized manager has to sign every
purchase order.” Every violation requires some form of human action to
satisfy the business constraint (e.g. "sign the purchase order"). That takes
some time, during which the constraint is violated. So, we do not consider
business constraints to be invariants.

Summarizing, in our notion of information systems, concepts, relations, and
constraints carry the business semantics. Of the three types of constraint, only
two are invariants.

2.2 Ampersand

We employ Ampersand as a prototyping language to demonstrate our approach.
Ampersand serves as a language for specifying information systems through a
framework of concepts, relations, and constraints. It comprises the three types
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of constraints discussed in this paper, making it an ideal platform for practical
testing of our approach. In Ampersand, developers articulate constraints using
heterogeneous relation algebra [5,9]. The systems they generate keep invariants
satisfied and alert users to violations of business constraints. The absence of
imperative code in Ampersand scripts enhances reasoning about the system,
while its static typing [18] yields the established benefits in software engineering
processes [4,14]. Constraints carry business semantics, which makes “preserving
the meaning as much as possible” explicit. An Ampersand script provides just
enough information to generate a complete system, allowing extraction of a clas-
sical database schema (i.e., data structure plus constraints) from the Ampersand
script.

Ampersand has seen practical use both in education (Open University of
the Netherlands) and industry (Ordina and TNO-ICT). For instance, Ordina
developed a proof-of-concept of the INDIGO-system in 2007, leveraging Amper-
sand for accurate results under tight deadlines. Today, INDIGO serves as the
core information system for the Dutch immigration authority (IND). More re-
cently, Ampersand played a role in designing the DTV information system for
the Dutch Food Authority (NVWA), with a prototype built in Ampersand serv-
ing as a model for the actual system. TNO-ICT, a prominent Dutch industrial
research laboratory, has utilized Ampersand for various research purposes, in-
cluding a study of international standardization efforts of RBAC (Role-Based
Access Control) in 2003, and a study of IT architecture (IEEE 1471-2000)[8] in
2004. Ampersand has also been employed at the Open University of the Nether-
lands, where it is taught in a course called Rule-Based Design[12]. Students in
this course utilize a platform named RAP, constructed in Ampersand [13], which
represents the first Ampersand application to run in production.

2.3 Zero downtime

To make the case for zero downtime, consider this problem: Suppose we have an
invariant, u, in the desired system, which is not part of the existing system. In
the sequel, let us call this a new invariant. Now, suppose the data in the existing
system does not satisfy u. If u is a transactional invariant, the desired system
will restore it automatically. But if it is a blocking invariant, the desired system
cannot spin up because all of its invariants must be satisfied. To avoid downtime,
we must implement new blocking invariants initially as a business constraint, to
let users satisfy them. The moment the last violation of u is fixed, the business
constraint can be removed and u can be implemented as a blocking invariant.
This is the core idea of our approach.

The migration system to be generated is an intermediate system, which con-
tains all concepts, relations, and constraints of both the existing and the desired
system. However, it implements the blocking invariants of the desired system as
business constraints. This migration system must also ensure that every viola-
tion that is fixed is blocked from recurring. In this way, the business constraint
gradually turns into a blocking invariant, satisfying the specification of the de-
sired system. Since the number of violations is finite, the business can resolve
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these violations in finite time. In this way, the migration system bridges the gap
and users get a zero downtime SCDM.

Summarizing, the following requirements apply to SCDMs

1. users must experience zero downtime, to enable more frequent SCDMs.
2. users must be able to restore invariants in the new system. So, we need an

intermediate “migration system” that implements blocking constraints of the
desired system as business constraints, in order to deliver zero downtime.

3. the number of violations that users must fix is finite and decreases (mono-
tonically) over time, to ensure that the migration system does not need to
be kept alive infinitely.

2.4 Data Migrations

Data migration occurs when a desired system replaces an existing one, while
preserving the meaning of the present data as much as possible [15]. In practice,
data migrations typically deploy the existing system and the desired system side-
by-side, while transferring data in a controlled fashion, as shown in Figure 2. To

Fig. 2. Migration phase

automate the migration as much as possible and to achieve zero downtime, we
must deploy a third system: the migration system. This system has its own
schema. It comprises the schemas of both the existing system and the desired
system, so the migration system can copy the data from the existing to the
desired system. It uses transactions to copy the data and to resolve some forms of
data pollution. Not all of the work, however, can be automated. Data pollution,
new business rules, or known issues in the existing system may occasionally
require tailoring a script describing the migration system to specific needs that
require action of users in production. For that purpose, the migration engineer
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specifies business constraints in the migration system. In Ampersand, a developer
can use business constraints to implement such needs.

Before a migration starts we assume that the existing system is up and run-
ning and all of its invariants are satisfied. The ingress is directing traffic to the
existing system. The data migration has three distinct steps:

Pre-deploy The migration engineer deploys both the migration system and the
desired system with their initial data, to allow both systems to satisfy their
initial invariants before going live. The existing data is still in the existing
system and the ingress still directs all traffic to the existing system. So, users
notice no difference yet. The migration system starts copying data from the
existing system.

Moment of transition (MoT) After the migration system is done copying
data, the migration engineer switches all traffic to the migration system. This
is the moment users will notice the difference because the traffic switch also
deploys the functionality of the desired system. So, in the eyes of an average
user, the migration system may look like the desired system. However, the
migration system relaxes the blocking invariants of the desired system until
users resolve the violations of the new blocking invariants. Since the existing
system receives no more traffic, its activity will come to a halt and its data
will become static. The migration system stays active until all invariants of
the desired system are satisfied and the desired system can take over the
work from the migration system.

Moment of completion (MoC) Once the invariants of the desired system are
satisfied, the migration engineer switches all traffic to the desired system. The
blocking invariants of the desired system are now in effect, so users cannot
violate them anymore. After this switch, the migration engineer can safely
remove both the migration system and the existing system.

Transactions in the existing system that happen during the time that the
migration system is copying data cause no problem, because their changes are
copied by the migration system, too. However, after the MoT there must be no
new changes in the existing system to avoid violations of new invariants that the
migration system has already fixed.

The following section introduces the definitions required to migrate data from
one system to another.

3 Definitions

An information system is a combination of data set, schema, and functionality.
For the purpose of this paper, we ignore functionality captured in user interfaces
to focus on the transition of business semantics in the data. Section 3.1 describes
how we define data sets. Since data sets are sets, we will use set operators
∪ (union), ∩ (intersect), − (set difference), and an overline x as complement
operator on sets. Section 3.2 defines constraints and their violations. Schemas
are treated in section 3.3. Then section 3.4 defines information systems.



8 S. Joosten

3.1 Data sets

A data set D describes a set of structured data, which is typically stored per-
sistently in a database of some kind. The notation DS refers to the data set
of a particular system S . The purpose of a data set is to describe the data of
a system at one point in time. Before defining data sets, let us first define the
constituent notions of atom, concept, relation, and triple.

Atoms serve as data elements. All atoms are taken from a set called A.
Concepts (concept symbols) can be understood as (names for) types, and our
definitions do not exclude sub-typing. All concept symbols are taken from a
set C. For example, a developer might choose to classify Peter and Melissa
as Person, and 074238991 as a TelephoneNumber. In this example, Person and
TelephoneNumber are concept symbols. Moreover, Peter, Melissa and 074238991
are atoms. In the sequel, variables A, B, C, D will represent concept symbols,
and variables a, b, and c represent atoms. The relation inst : A×C relates atoms
to concept symbols. The term a inst C means that atom a is an instance of a
concept denoted by C.

Relations serve to organize and store data, allowing developers to represent
facts. In this paper, variables r, s, and d represent relation symbols. All relation
symbols are taken from a set R. R is disjoint from C and A. Every relation
symbol r has a name, a source concept, and a target concept. The notation
r = n〈A,B〉 denotes that relation symbol r has name n, source concept A, and
target concept B. The part 〈A,B〉 is called the signature of the relation symbol.
When the signature is clear from the context, or not important, we use r and n
interchangeably.

Triples serve to represent data. A triple is an element of A × R × A. For
example, 〈Peter, phone〈Person,TelephoneNumber〉, 074238991〉 is a triple.

Definition 1 (Data set). A data set D is a tuple 〈T , inst〉 with finite T ⊆
A× R× A and inst ⊆ A× C that satisfies:

〈a,n〈A,B〉, b〉 ∈ T ⇒ a inst A ∧ b inst B (1)

Looking at the example, equation 1 says that Peter is an instance of Person and
074238991 is an instance of TelephoneNumber. In practice, users can say that the
person Peter has telephone number 074238991. So, the “thing” that Peter refers
to (which is Peter) has 074238991 as a telephone number. The notations TD and
instD are used to disambiguate T and inst when necessary. To save writing in
the sequel, the notation a r b means that 〈a, r, b〉 ∈ T . We’ll use D to denote the
set of all possible data sets.

A relation symbol r can serve as a container of pairs, as defined by the
function popr : D → P{A × A}. It defines a set of pairs, also known as the
population of r:

popr(D) = {〈a, b〉 | 〈a, r, b〉 ∈ TD} (2)

Note that the phrase “pair 〈a, b〉 is in relation r” means that 〈a, b〉 ∈ popr(D)
where D is clear from the context. We overload the notation pop so we can use
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it on concept symbols popC : D → P{A} and expressions. We also define the
difference of populations, in equation 4, both for relation and concept symbols:

popC(D) = {x | x instD C} (3)
popx−y(D) = popx(D)− popy(D) (4)

3.2 Constraints

Every constraint symbol is an element of a set called U. In this paper, variables
u and v represent symbols for all three types of constraints. For every constraint
u, function violu : D→ P{A×A} produces the violations of u, and signu : C×C
yields the signature of u. The definition of violu implies the assumption that we
represent each violation as a pair. Every constraint must satisfy:

〈a, b〉 ∈ violu(D) ∧ signu = 〈A,B〉 ⇒ a inst A ∧ b inst B (5)

Note that violu(D) = ∅ means that D satisfies the constraint whose symbol is
u. We’ll say that u is satisfied in such cases.

In order to guarantee that the work required for migration is finite, it suffices
to require that violu(D) is a finite set. The language Ampersand implements
many of the sets described so far as finite sets, causing any constraint that can
be specified in it to satisfy that violu(D) is finite.

In the current paper, we will, for the sake of simplicity, only consider trans-
actional invariants for which violations can be repaired by inserting them into a
single designated relation. The language Ampersand has more types of transac-
tional invariants than just this one, but this is sufficient for this paper.

In case u denotes a transactional invariant, the system will keep it satisfied by
adding the violations to a specific relation denoted by n〈A,B〉 such that 〈A,B〉 =
signu. This requires that adding the pair to that relation solves the violation:

(a, b) ∈ violu(〈T , inst〉) =⇒
violu(〈T ∪ {〈a,n〈A,B〉, b〉}, inst〉) = violu(〈T , inst〉)− {(a, b)}

(6)

It is obvious that not every conceivable constraint can satisfy this equation. So,
we assume that the compiler restricts the set of transactional invariants to those
that satisfy equation 6. As n〈A,B〉 is specific for u, we can write enforceu for it.
We call this the symbol for the enforced relation of the transactional invariant
denoted by u:

enforceu = n〈A,B〉 (7)

Let us denote a transactional invariant as r ← [ violu or equivalently r ← [
λD . violu(D), in which r = enforceu. The symbol u ∈ U that refers to
enforceu ← [ violu is written as [enforceu ← [ violu].

3.3 Schemas

Schemas serve to capture the semantics of a system [15]. They define concepts,
relations, and constraints. We assume that a software engineer defines a schema
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on design time, and a compiler checks whether the semantics are consistent.
Errors the compiler detects are prohibitive for generating code, to prevent a
substantial class of mistakes to ever reach end-users.

We describe a schema Z as a tuple 〈C,R,U , E ,B〉, in which C ⊆ C is a finite
set of concept symbols, R ⊆ R is a finite set of relation symbols, U ⊆ U is
a finite set of symbols for blocking invariants, E ⊆ U is a finite set of symbols
denoting transactional invariants, and B ⊆ U is a finite set of symbols for business
constraints.

Definition 2 (Schema). A schema is a tuple 〈C,R,U , E ,B〉 that satisfies:

n〈A,B〉 ∈ R ⇒ A ∈ C ∧ B ∈ C (8)
u ∈ U ∪ E ∪ B ∧ signu = 〈A,B〉 ⇒ A ∈ C ∧ B ∈ C (9)

u ∈ E ⇒ enforceu ∈ R (10)

Requirements 8 and 9 ensure that concept symbols mentioned in relations and in
the signature of constraints are part of the schema. Requirement 10 ensures the
enforced relation symbol of a transactional invariant is declared in the schema.
When clarity is needed, we write CZ , RZ , UZ , EZ , BZ for C, R, U , E , B
corresponding to Z = 〈C,R,U , E ,B〉.

3.4 Information Systems

Let us now define information systems by enumerating the requirements.

Definition 3 (information system).
An information system S is a tuple 〈D ,Z 〉, in which

– D = 〈T , inst〉 is a data set (so it must satisfy equation 1). We write TS = T
and instS = inst if needed;

– Z = 〈C,R,U , E ,B〉 is a schema (so it must satisfy equations 8 thru 10).
– Triples in the data set must have their relation symbol mentioned in the

schema:

〈a,n〈A,B〉, b〉 ∈ T ⇒ n〈A,B〉 ∈ R (11)

– All violations must have a type, which follows from (5).
– The system keeps any transactional invariant denoted by u satisfied by adding

violations to the relation denoted by enforceu (6).
– All invariants must remain satisfied:

∀u ∈ U ∪ E . violu(D) = ∅ (12)

We assume that a deployment will fail if these requirements are not satisfied.
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4 Generating a Migration Script

The complexity of migrating data to date yields expensive and error-prone mi-
gration projects. By generating the migration system we can prevent many hu-
man induced errors. However, to allow for human tailoring, we generate a script
that describes this migration system (from which the system can be generated
automatically).

This section starts with a presentation of the migration script that is to be
used.

4.1 Generating a migration script

In the migration system, we need to refer to the items (concepts, relations, and
constraints) of both the existing system and the desired system. We have to
relabel items with prefixes to avoid name clashes in the migration system. We
use a left arrow to denote relabeling by prefixing the name of the item with
“old.” (or some other prefix that avoids name clashes).

←−−−−
〈D ,Z 〉 = 〈

←−
D ,
←−
Z 〉

←−−−−−
〈T , inst〉 = 〈

←−
T , inst〉

←−−−−−−−−−−
〈C,R,U , E ,B〉 = 〈C,

←−
R,
←−
U ,
←−
E ,
←−
B 〉

←−
T = {〈a,←−r , b〉 | 〈a, r, b〉 ∈ T }

←−−−−n〈A,B〉 = old.n〈A,B〉←−
X = {←−x | x ∈ X}

viol←−u (
←−
D ) = violu(D)

sign←−u = signu

enforce←−u =
←−−−−−−
enforceu

(13)

The notation
−→
S is defined similarly, using prefix “new.” instead of “old.”. This

relabeling does not have any effect on the behavior of the system, i.e. S ,
←−
S ,

and
−→
S are indistinguishable for end-users.
Then we define the migration system M as follows: Let 〈D ,Z 〉 be the existing

system. Let 〈D ′,Z ′〉 be the desired system in its initial state.

1. We take a disjoint union of the data sets by relabeling relation symbols, so
the migration script can refer to relations from both systems:

DM =
←−
D ∪

−→
D ′ (14)

2. We create transactional invariants to copy the population of relations from
D to D ′: For every relation r shared by the existing and desired systems, we
generate a helper relation: copyr, and two transactional invariants. The first
transactional invariant populates relation−→r and the second populates copyr.
The helper relation copyr contains the pairs that have been copied. We use
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the helper relation to keep the transactional invariants from immediately
repopulating −→r when a user deletes triples in D ′.

R1 = {copyr | r ∈ RZ ′ ∩RZ } (15)

E1 =
{[−→r ←[ pop←−r −copyr

] ∣∣∣ r ∈ RZ ′ ∩RZ

}
∪ (16)

{[copyr ← [ pop−→r ∩←−r ] | r ∈ RZ ′ ∩RZ }

The copying process terminates when:

∀r ∈ RZ ′ ∩RZ .
←−r = copyr (17)

Since the enforce rules only insert triples, the copying process is guaranteed
to terminate. However, deletions in the old system that happen during this
copying process might not propagate into the migration system. This may
pose a risk to the business with respect to data quality.

3. The new blocking invariants are UZ ′ −UZ . For each new blocking invariant
u, we generate a helper relation: fixedu, to register all violations that are
fixed, and a blocking invariant v in the migration system that blocks fixed
violations from recurring:

R2 = {fixedu | u ∈
−−−−−−−→
UZ ′ − UZ } (18)

Ublock = {v with
signv = signu

violv(D) = violu(D) ∩ popfixedu(D)

(19)

| u ∈
−−−−−−−→
UZ ′ − UZ }

4. We use a transactional invariant to produce the population of the helper
relation fixedu.

E2 = {fixedu ← [ λD . violu(D) ∪ popfixedu(D) | u ∈
−−−−−−−→
UZ ′ − UZ } (20)

5. To signal users that there are violations that need to be fixed, we generate
a business constraint for each new blocking invariant denoted by u:

Bfix = {v with
signv = signu

violv(D) = violu(D)

(21)

| u ∈
−−−−−−−→
UZ ′ − UZ }

In some cases, a migration engineer can invent ways to satisfy these invariants
automatically. This is one of the places where it is useful for the generator to
produce source code (as opposed to compiled code) to allow the migration
engineer to replace a business constraint with transactional invariants of her
own making. After all violations are fixed, i.e. when equation 22 is satisfied,
the migration engineer can switch the ingress to the desired system. This
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occurs at MoC and replaces Ublock in the migration system by the blocking
invariants of the desired system. This moment arrives when:

∀u ∈
−−−−−−−→
UZ ′ − UZ . violu(D) ⊆ popfixedu(D) (22)

Equivalently, ∀u ∈
−−−−−−−→
UZ ′ − UZ . violu(D) = ∅. After this, the migration engi-

neer can remove the migration system and the old system.
6. Let us combine the above into a single migration schema:

ZM = 〈CD ∪ CD′ , (23)
←−−
RZ ∪

−−→
RZ ′ ∪R1 ∪R2,

Ublock ∪
−−−−−−−→
UZ ∩ UZ ′ ,

E1 ∪ E2 ∪
−−→
EZ ′ ,

Bfix ∪
−−→
BZ ′〉

This schema represents the migration system. In our reasoning, we have only
used information from the schemas of the existing system and the desired
system. This shows that it can be generated from these schemas without
using any knowledge of the data sets.

5 Proof of Concept

By way of proof of concept (PoC), we have built a migration system in Am-
persand. To demonstrate it in the context of this paper, the existing system,
〈D ,Z 〉, is rather trivial. It has no constraints and just one relation, r 〈A,B〉. Its
population is A = {a1, a2, a3}, B = {b1}, and popr(D) = {〈a1, b1〉}. The desired
system contains one blocking invariant, which is the totality of r 〈A,B〉. Its viola-
tions are 〈a2, a2〉 and 〈a3, a3〉. The schema of the migration system, ZM , follows
from definition 23.

Figure 3 shows four successive screenshots, featuring←−r as old_r, −→r as new_r.
Exhibit A shows the migration system just after deployment, at the MoT.

It shows that the copying of old_r to new_r has worked. The yellow message in
exhibit A indicates that a user needs to fix totality for a2 and a3. The column
fixed_u contains the elements for which totality is satisfied, so these fields are
blocked from becoming empty.

Exhibit B shows an attempt to remove 〈a1, b1〉 from new_r The red message
blocks this from happening and the user gets a “Cancel” button to roll back the
action. Note that the fields for a2 and a3 are empty, which is fine because they
will not be blocked until they are given some value.

Exhibit C shows that the user fills in “Jill”, which means that 〈a1, Jill〉 is
added to new_r.

Exhibit D: When the last atom of A is paired with an atom from B, require-
ment 22 is satisfied and the prototype informs the user to remove the migration
system.
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BA

C D

Fig. 3. Four successive screenshots in the PoC

5.1 Validation

The proof of concept gives but one example of something that works. In fact,
having built prototypes increases our confidence, but cannot serve as a proof.
This section argues the validity of our method. We take advantage of the formal
definition of the generated migration system (section 4) to precisely state the
assumptions and requirements of its validity.

The initial situation consists of one existing system S and one desired system
S ′ of which we have a schema, ZS ′ and an initial dataset, DS ′ . We may assume
that S satisfies definition 3 because it is a system in production. Also, ZS ′

satisfies equations 8 thru 10 because the schema of the desired system is type-
correct. Together, the schema and the intial dataset forms the desired system
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〈ZS ′ ,DS ′〉, which satisfies definition 3. With these assumptions in place, we
must verify that:

1. After predeployment, the migration system M copies the designated triples
to the desired system in finite time.

2. At MoT, M satisfies the definition of information system (3), especially
that it has no violations of blocking invariants (requirement 12) to ensure a
successful deployment.

3. Once business actors have fixed the new business invariants, i.e. when the
condition for the MoC (requirement 22) is satisfied, the behavior of M and
the desired system is identical, so moving the ingress from M to the desired
system is not noticable for end-users.

4. The old system has become redundant, so we can remove S and M .

Let us discuss these points one by one.
The relations to be copied from S are those relations that the desired system

retains:RZ ′∩RZ . For each r to be copied from S , M contains a relation symbol
copyr in R1 (eqn. 15). After the MoT, the ingress sends all change events to M ,
so the existing system can finish the work it is doing for transactional invariants
and will not change after that. In other words, the population of every relation
symbol in RZ becomes stable and so does every copyr. At that point in time,
eqn. 17 is satisfied and stays satisfied. Effectively, E1 becomes redundant once
the copying is done.

Then, M contains only blocking invariants that exist in the existing system
as well (def. 2.3). For this reason, all of these blocking invariants are satisfied on
MoT. Since M contains no other blocking invariants, it satisfies requirement 12.
This implies that M works and the migration engineer may safely switch the
ingress from S to M .

Thirdly, the constraints that may need human intervention are the blocking
invariants of the desired system that were not in the existing system (UZ ′ −UZ

in def. 21). M features Bfix to represent these invariants in the guise of business
constraints. This lets business actors resolve the violations. Each violation in
Bfix that a business actor resolves, will never reappear because it is registered
in fixedr by the transactional invariants of E2 (eqn. 20). When all violations
are fixed, every rule in Ublock has become blocking. So, after the MoC, Ublock ∪−−−−−−−→
UZ ∩ UZ ′ equals

−−→
UZ ′ in the migration system.

The constraints in the desired system are partly written to resolve data pol-
lution. In some cases, the migration engineer wants users to get rid of that
pollution and turn the rule in a blocking invariant as described above. However,
some of these constraints might be satisfiable automatically. In that case, the
migration engineer might substitute such constraints from Bfix by transactional
invariants in EM . These invariants don’t need the mechanism described above,
because the migration system itself will take care that all constraints in EM are
satisfied. Both cases need to be resolved at MoC.

So finally, when all violations are resolved, the constraints in Bfix have effec-
tively become blocking invariants. The blocking invariants in the desired system
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consist of UZ and Bfix, which is equivalent to UZ ′ . Hence we can replace Bfix∪UZ

with UZ ′ after condition 22 is satisfied.
Now we can assemble the results at MoC. The above reasoning shows that at

MoC 〈CD ∪CD′ ,
←−−
RZ ∪

−−→
RZ ′∪R1∪R2,Ublock∪

−−−−−−−→
UZ ∩ UZ ′ , E1∪E2∪

−−→
EZ ′ ,Bfix∪

−−→
BZ ′〉

is equivalent to 〈CD′ ,
−−→
RZ ′ ,

−−→
UZ ′ ,

−−→
EZ ′ ,

−−→
BZ ′〉, which is equal to

−→
Z ′. So from MoC

onwards, 〈DM ,ZM 〉 is equivalent to 〈DM ,
−→
Z ′〉. Hence, we can tell that DM is

a valid dataset for the desired system, so we can switch the ingress from the
migration system to the desired system without users noticing the difference.
Then, the migration system gets no more inputs, so it can be removed. Since
E1 and E2 are redundant after the MoC, we can retain

−−→
EZ ′ in M , which is

equivalent to EZ ′ in the desired system. Likewise, Bfix has become redundant,
so M can do with just

−−→
BZ ′ . In the desired system, that is equivalent to BZ ′ .

So, the constraints in the desired system after the MoC are equivalent to the
constraints in the MoC.

6 Conclusions

In this paper, we describe the data migration as going from an existing system to
a desired one, where the schema changes. As Ampersand generates information
systems, creating a new system can be a small task, allowing for incremental
deployment of new features. We describe the parts of a system that have an
effect on data pollution. We assume that the existing system does not violate any
constraints of its schema, but address other forms of data pollution: constraints
that are not in the schema but are in the desired schema are initially relaxed such
that the business can start using the migration system, after which this form
of data pollution needs to be addressed by human intervention. We propose a
method for doing migration such that only a finite amount of human intervention
is needed. Our method allows a system similar to the desired system to be used
while the intervention takes place.

Our proposed migration is certainly not the only approach one could think
of. However, we have not come across other approaches that allow changing the
schema in the presence of constraints. As such, we cannot compare our approach
against other approaches. We envision that one day there will be multiple ap-
proaches for migration under a changing schema to choose from. For now, our
next step is to automate the generation of migration scripts as an extension to
Ampersand.

This work does not consider what to do about (user) interfaces. Instead, it
models events by assuming that any change to the data set can be achieved. In
practice, such changes need to be achieved through interfaces. Most Ampersand
systems indeed allow the users of the system to edit the data set quite freely
through the interfaces. However, some interfaces may require certain constraints
to be satisfied, which means that interfaces of the desired system might break
when used through the migration system. In the spirit of the approach out-
lined here, we hope to generate migration interfaces that can replace any broken
interfaces until the Moment of Transition. How to do this is future work.
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