
EasyChair Preprint
№ 15890

Applying Genetic Algorithm with Saltations to
MAX-3SAT

Ryan Alomair, Hafsa Farooq, Daniel Novikov, Akshay Juyal and
Alex Zelikovsky

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 6, 2025



Applying Genetic Algorithm with Saltations to
MAX-3SAT

Ryan Alomair[0009−0007−5605−6790], Hafsa Farooq[0009−0002−6260−5016], Daniel
Novikov[0000−0003−2126−0197], Akshay Juyal, Alexander

Zelikovsky[0000−0003−4424−4691]

Department of Computer Science, Georgia State University, Atlanta, GA, 30303, USA

Abstract. Punctuated evolution, (synonymous with Saltations, Evolu-
tionary Jumps)—the pattern of rapid, significant mutational change—had
not been observed in real-time until SARS-CoV-2 viral variants emerged
with multiple mutations occurring together. By using Epistasis as a
framework to understand this phenomenon, where the effect of one mu-
tation depends on the influence of one or more other mutations (ie. com-
binations of mutations) we can model the fitness landscape of viral vari-
ants with an Epistatic network, and capture this relationship between
different combinations of mutations as a result[11]. In exploring these
relationships, it has been found that dense subgraphs (where the density
of the subgraph increases with the number of edges, given a number of
vertices) within the network correspond to emerging saltations, which
can uncover high fitness regions seemingly distant from the variant(s)
they originally derived from[11]. We incorporate this pattern into the
Genetic Algorithm (GA+EJ) as a means to produce new solutions that
escape the inherent tendency to produce solutions converging to a local
maximum. We applied GA+EJ to the MAX-3SAT problem, and found
improvement for satisfiable problem instances with 600 variables and
2550 clauses, as well as 100 variables and 429 clauses, allowing us to
find solutions giving a better approximation of the optimum when using
jumps, than without them.

Keywords: MAX-3SAT Problem · Evolution · Genetic Algorithm · Epistatic
network ·

1 Introduction

SARS-CoV-2 variants took the world by storm in November 2020, necessitating
the exploration of new methodologies to predict new variants. Variants like Al-
pha and Omicron presented unprecedented challenges to scientists, as the virus
had undergone multiple mutations that seemed to occur simultaneously before
coming to fruition as Variants of Concern (VOCs)[5][1][2]. While it is not unusual
for a virus to mutate multiple times before being passed on, it is uncommon for a
variant to retain multiple mutations that, only when present together, translate
to phenotypic effects granting higher fitness. Multiple studies have consequently



2 Authors Suppressed Due to Excessive Length

tried to debunk this phenomenon, explaining it through the framework of epista-
sis[18][20][17][16][19][14][12], where interactions between multiple mutations can
play a role in shaping the viral fitness landscape[11][10]. Rather than evolving
through a gradual accumulation of independent mutations with additive effects,
SARS-CoV-2 exhibits punctuated evolution, characterized by sudden shifts in
viral fitness due to epistatic interactions[11][15].

This dynamic can be effectively modeled using an epistatic network, in which
mutations form interconnected nodes, and newly emerging, highly fit variants
correspond to dense subgraphs within this network[11]. These dense subgraphs
represent clusters of co-occurring mutations that collectively reflect higher viral
fitness, facilitating rapid evolutionary jumps. Such changes contrast with tradi-
tional models of gradual evolution, where selective pressures incrementally refine
individual mutations over time. Inspired by this evolutionary phenomenon, we
incorporate punctuated evolution into the genetic algorithm.

The genetic algorithm (GA) is an optimization technique inspired by natural
selection, where a population of candidate solutions evolves through iterative
processes of natural selection (based on a fitness function) genetic crossover,
and mutation[9]. Once an initial population of randomized solutions is produced,
higher-fitness solutions are selected via tournament selection, which will then be
used to produce offspring through the process of genetic crossover and muta-
tion. Subsequently, properties (variable assignments) of higher-fitness solutions
propagate over successive generations, while properties of lower fitness solutions
are eliminated. As a result, each solution’s variable assignments become increas-
ingly homogenuous over time, stagnating in local fitness peaks without exploring
potentially superior alternatives[7]. To counter this inherent fault, we use Clique-
SNV to map solutions to an epistatic network and simulate saltations. These new
solutions are then inserted directly into the mating pool, allowing their proper-
ties to propagate to the next generation and effectively incorporate a tailored
diversity to the gene pool[3]. By incorporating these solutions, GA can break out
of its premature convergence, and explore variable assignments corresponding to
solutions in other high fitness neighborhoods of the epistatic network[3].

Section 2 discusses the general process of GA and subsequent parts (k-
tournament selection, genetic crossover and mutation). Section 3 goes on to
discuss SARS-CoV-2/Epistasis/Punctuated Evolution, and how these concepts
manifest in our use of Clique-SNV. Section 3 then goes on to describe how we in-
tegrate Clique-SNV into simple genetic algorithm, to produce GA+EJ. Section 3
finishes with a discussion of GA+EJ as it is applied to the MAX-3SAT problem.
Section 4 highlights more specific details on our implementation and parameter
selection. Section 5 covers our problem instances, results/analysis, and finishes
with our concluding notes/future plans.



Applying Genetic Algorithm with Saltations to MAX-3SAT 3

2 Genetic Algorithm

2.1 Simple Genetic Algorithm

GA begins by initializing a randomized population of solutions for a given popu-
lation size, where each solution is a binary bit string consisting of 1s and 0s. Each
bit represents a boolean value that will be assigned to a corresponding variable
in the problem being solved, meaning the length of each solution is equal to the
number of variables in the problem instance. Each solution is then passed into
a fitness function, which determines how well the solution solves the problem
instance. Once a fitness value is determined for each solution, some are chosen
to be part of the mating pool based on a k-tournament selection (simulating
natural selection). A total of k solutions (input parameter) will be randomly se-
lected, and the one with the highest fitness will be selected for the mating pool.
That selection process will repeat until the mating pool reaches a predetermined
size (input parameter)[9].

[13]

Fig. 1. Tournament selection performed for tournament size k=3. The solution of high-
est fitness between the k solutions is selected for the mating pool.

Solutions from the mating pool are then randomly selected in pairs to pro-
duce a pair of offspring solutions. The parent solutions will first undergo a single
point genetic cross-over: a random index p is chosen, and the variable assign-
ments leading up to and including p are then taken from parent1 and given to



4 Authors Suppressed Due to Excessive Length

child1, and the same for parent2 with child2. Then, the variable assignments
beginning at p+1 until the end are taken from parent2 and given to child1, and
vice versa with parent1 and child2. As a result, each child solution will have a
complementing variable assignment of each parent solution, based on the ran-
domly selected point p (note: this is often extended to a k-point crossover, where
k indices are selected, and child solutions contain alternating portions of each
parent solution, still forming a complement to each other)[9].

Next, each child solution undergoes mutation, where bits are flipped at ran-
dom based on a mutation probability (input parameter) as a means to help
maintain/control the amount of diversity with each solution. This process of
producing two child solutions at a time is repeated until the population size is
met, forming a new generation. Once the new generation of offspring is ready,
each of their fitness values is calculated, and the process repeats continuously
until a threshold number of generations are produced, a threshold number of gen-
erations without improvement of global fitness is reached, or a predetermined
optimum global fitness is reached[9].

Fig. 2. a) Two individuals are performing crossover. Red line represents the point p=5
of crossover. b) Mutation is performed on the 2nd, 6th and 8th genes of the individual.

Although the above approaches for parent selection, crossover and muta-
tion are common for GA, these methods can be implemented in different ways,
and sometimes have different approaches to producing offspring solutions al-
together[9]. Ultimately, the approach must be tailored to the problem which
GA solutions are being produced for. In this study, solutions are crafted for
the MAX-3SAT problem, warranting a modified approach to our crossover and
mutation functions, which are described in section 3.4.



Applying Genetic Algorithm with Saltations to MAX-3SAT 5

3 Genetic Algorithm with Evolutionary Jumps

3.1 Epistasis, Punctuated Evolution and SARS-CoV-2

The evolution of SARS-CoV-2 variants can be understood through the lens of
epistasis, which describes the non-additive interactions between mutations that
influence viral fitness[18][20][17][16][19][14][12]. Epistasis constrains the set of vi-
able genomic variants and, consequently, restricts the potential evolutionary tra-
jectories of the virus. This constraint can be formalized using graph-theoretical
frameworks, where viable genotypes form a structured subgraph within a hy-
percube, known as the viable space. Within this space, a genotype is considered
viable if its constituent mutations collectively form a maximal clique in the un-
derlying epistatic network. As a result, viral evolution does not proceed through
a smooth and continuous exploration of all possible mutations, but is channeled
along a discrete set of constrained pathways defined by these cliques instead[11].

This framework provides a powerful means of predicting high-fitness variants
by identifying the restricted evolutionary trajectories accessible to the virus[11].
Importantly, these constraints align with observations of punctuated evolution,
wherein viral lineages appear to undergo episodic bursts of adaptation rather
than gradual, incremental change[15][2]. Such shifts may correspond to tran-
sitions between distinct regions of the viable space, where a set of epistatic
interactions must be co-acquired before a new, highly fit genotype emerges. By
leveraging this network-based understanding of epistasis, it becomes possible to
prioritize specific mutational combinations for functional screening, ultimately
aiding in the forecasting of future SARS-CoV-2 variants with high fitness poten-
tial[11].

3.2 Clique-SNV

The Clique-SNV framework can identify epistatic interactions among single nu-
cleotide variants (SNVs) using a graph-theoretical approach. It first classifies
SNV pairs as linked, forbidden, or unclassified based on their observed co-
occurrence in sequencing reads. If a 2-haplotype appears significantly more often
than expected by sequencing noise, it is classified as linked, meaning the variants
likely co-occur in a haplotype. If its occurrence is significantly lower than ex-
pected, the pair is forbidden, indicating they are unlikely to be found together.
All other pairs remain unclassified until further evaluation[6].

Next, Clique-SNV constructs an SNV graph G=(V,E) where the vertices
(V) represent minor variants and the edges (E) connect the linked SNVs. This
graph can capture structural constraints on co-occurring mutations. Since many
isolated variants arise from sequencing errors, filtering these out refines the SNV
graph and improves accuracy[6].

Finally, Clique-SNV identifies maximal cliques within the SNV graph using
the Bron–Kerbosch algorithm. A clique represents a set of SNVs that are all
pairwise linked, meaning they are likely to co-occur in a viable haplotype [6].
By decomposing the SNV graph into cliques, Clique-SNV can reveal constrained



6 Authors Suppressed Due to Excessive Length

evolutionary pathways, showing how certain mutations must co-occur for viabil-
ity. This framework helps predict high-fitness variants and provides insight into
the structured nature of viral evolution[3].

3.3 Integrating Clique-SNV into GA

Integrating Clique-SNV into the genetic algorithm (GA) allows for the detection
of epistatic interactions within evolving solutions. As GA progresses, solutions
to accumulate across generations and are converted to FASTA format, where 0s
(reference alleles) are encoded as A’s and 1s (mutations) as C’s. Clique-SNV then
analyzes all generated solutions, identifying statistical links between frequently
co-occurring variable assignments and constructs an epistatic network.

In this network, nodes represent variable assignments (e.g., a particular posi-
tion being 0 or 1), while edges form between assignments that frequently co-occur
in high-fitness solutions. Note that properties of high-fitness solutions naturally
persist through generations, causing them to gain greater influence in the net-
work and reinforcing the statistical associations between their variable assign-
ments. Strongly connected components reveal dependencies between variable
states, constraining viable evolutionary pathways. The maximal cliques in this
network then naturally emerge as sets of assignments that consistently appear
together in viable solutions[3].

Just as dense subgraphs in SARS-CoV-2’s epistatic network reveal muta-
tions that co-occur and constrain evolutionary trajectories, Clique-SNV detects
maximal cliques in the GA’s epistatic network, identifying groups of variable
assignments that frequently appear in high-fitness solutions.

By leveraging these maximal cliques, Clique-SNV can construct new candi-
date solutions by recombining linked variable assignments, simulating evolution-
ary jumps in the search space—just as epistatic constraints in viral evolution
can give rise to saltations[3]. Thus, we use Clique-SNV to identify key epistatic
interactions and facilitate punctuated evolution, improving the GA’s ability to
efficiently explore the search space beyond recombination and random mutation.

3.4 GA+EJ Applied to the MAX-3SAT Problem

The MAX-3SAT problem is a well-known NP-hard optimization problem in
which the objective is to find a variable assignment that maximizes the number
of satisfied clauses in a Boolean formula. The formula is expressed in conjunctive
normal form (CNF), where each clause consists of exactly three literals (variables
or their negations) connected by logical ORs. The challenge lies in determining
an assignment of Boolean values (true or false) to the variables that satisfies as
many clauses as possible.

In this implementation, problem instances are provided in CNF files, which
specify the set of clauses and variables for a given MAX-3SAT problem. Each
candidate solution in the genetic algorithm represents a variable assignment,
where every variable in the formula is assigned either 0 (false) or 1 (true). These
assignments are then plugged into the CNF formula, and the fitness function



Applying Genetic Algorithm with Saltations to MAX-3SAT 7

evaluates their quality simply by counting the number of satisfied clauses. Higher
fitness values correspond to assignments that satisfy more clauses, guiding the
search toward optimal solutions.

The crossover function used in GA differs from the single-point crossover
discussed earlier. Since the order of bits in each solution determines the variable
assignment, we implement our crossover function differently than how it was de-
scribed in section 2 (the general case). Instead of splitting the parent solutions
at a fixed point, the crossover function preserves all variable assignments that
are identical between the two parent solutions in both child solutions. For vari-
ables where the parents differ, one child solution inherits the assignment from
the first parent, while the other child takes the assignment from the second par-
ent. This approach ensures that shared structure between high-fitness solutions
is maintained while still introducing recombination between for some variable
assignments.

The mutation function remains the same as previously described, applying
small random changes to individual variable assignments to maintain genetic di-
versity and prevent premature convergence. By incorporating evolutionary jumps
through Clique-SNV, the algorithm enhances its ability to escape local optima
and explore new high-fitness regions of the search space efficiently.

3.5 Incorporating Evolutionary Jumps

To insert solutions corresponding to evolutionary jumps, we wait for 10 gen-
erations to be produced without any improvement in global fitness, then call
Clique-SNV, which returns several EJ solutions that are inserted directly into
the mating pool for the next generation. Since EJ solutions are constructed
using statistically linked variable assignments in solutions that have already
been produced, it is important to allow enough generations (of no improvement)
to be produced prior to calling Clique-SNV, such that these relationships can
be discovered. That said, we also must not wait for too many generations to
pass, since this allows suboptimal/convergent solutions to occupy an increas-
ingly larger share of the cumulative solution space being used to construct the
epistatic network.

4 Implementation Specifics

4.1 Pygad as our Base Implementation

The implementation of the genetic algorithm is built using the PyGAD library,
which provides a flexible and efficient framework for developing evolutionary al-
gorithms[4]. PyGAD offers a wide array of customizable features, making it an
effective tool for fine-tuning GA behavior. Its built-in mechanisms for selection,
crossover, and mutation allow for seamless experimentation with different evolu-
tionary strategies, but also give us freedom to implement these on our own. Addi-
tionally, PyGAD’s callback functions, such as on fitness and on parents, enabled



8 Authors Suppressed Due to Excessive Length

the straightforward integration of Clique-SNV into the algorithm. By leverag-
ing these functions, we could dynamically analyze evolving solutions, construct
the epistatic network, and introduce evolutionary jumps without disrupting the
standard workflow of GA.

4.2 Parameters

To ensure optimal performance of the genetic algorithm, I carefully tuned var-
ious parameters to maximize the total number of clauses satisfied. The param-
eters adjusted during this process included population size, mating pool size,
tournament size, mutation type, mutation rate, crossover method, and selection
strategy. Each of these factors played a crucial role in determining how effec-
tively the algorithm explored the solution space and converged on high-fitness
solutions. Additionally, Clique-SNV required meticulous tuning of its own pa-
rameters to accurately capture epistatic interactions and facilitate effective evo-
lutionary jumps. These adjustments were essential to balancing exploration and
exploitation in the search process. A summary of all finalized parameters is pro-
vided in the Table 1, shown below, followed by a description of the tuning process
for some individual parameters.1

Table 1. Parameters Table

GA Parameter Value C-SNV Parameter Value

Population Size (1308),(256) Jump Threshold 10
Max. Gens No Improvement 300 Min. Gen. Wait 20
Num of Parents (28,38,32,50),(128) Jump Type Global Best
Num CPUs 16 C-SNV Timeout 1200sec
Parent Type Tournament Threshold.Freq 0.01
K-Tournament (35,26,41,26),(2) Threshold.Freq+ 0.01
Mutation Type Random Memory 96GB
Mutation Pr 0.01 Edge Limit 1000

1. Population size: 1308 Solutions
– While ensuring the population size was large enough to effectively explore

a wide solution space, making it too large came at a cost to overall
performance and quality of EJ solutions.

– By using a solution space too large, many generations would pass be-
fore there were enough consecutive generations without improvement.
Consequently, the cumulative store of solutions became overloaded with
those consisting of a suboptimal variable assignments to which the solu-
tions were converging. As a result, EJ solutions did not introduce enough
diversity in order to escape local optimums.



Applying Genetic Algorithm with Saltations to MAX-3SAT 9

2. Mating pool and tournament size
– The mating pool size was coordinated with the tournament size to ensure

a particular portion of the solution space would be explored. Tables 2 and
3 show which parameters correspond to which population sizes, shown
below:

Mating Pool Size Tournament Size % Soln. Space Explored

28 35 ∼53%

38 26 ∼54%

32 41 ∼64%

50 26 ∼64%
Table 2. For Population Size of 1308 solutions

Mating Pool Size Tournament Size % Soln. Space Explored

128 2 ∼63%
Table 3. For Population Size of 256 solutions

3. Max gens no improvement: 300
– I allow the GA+EJ and simple GA both to run until they have produced

300 generations without improvement in optimum fitness. This value was
chosen as the result of stringent testing to see how many generations
GA+EJ can produce without improvement before eventually reaching
its optimum. Simple GA generally reaches its optimum faster (due to its
premature convergence) but we allow both to run this long to remain
consistent.

4. Clique-SNV
– True Frequency

• This value represents the assumed lower bound on the actual occur-
rence rate of a given 2-haplotype (22) in the dataset. It is used to
control the probability of falsely identifying linked variable pairs by
ensuring that observed read counts are statistically significant.

• The probability of observing at least x ≥ O22 reads given that the
true frequency is at most t is constrained to be low enough to pre-
vent false-positive associations. This threshold is set such that the
expected number of false positives remains below 0.05 /

(
L
2

)
, where

L is the haplotype length.
• In my implementation, I initially set true frequency to 0.01, but if
the number of edges produced in the epistatic network exceeds the
predefined edge limit, I increment true frequency by 0.01 and rerun
Clique-SNV. This adjustment controls the density of the network by
filtering out weaker associations, preventing an excessive number of
edges from forming. Maintaining a strict edge limit is crucial because
the time required to find maximal cliques increases exponentially
with the number of vertices in the network.



10 Authors Suppressed Due to Excessive Length

– Edge Limit

• To manage computational feasibility, I set the edge limit to 1000, as
this ensures that maximal cliques can typically be found within 10
minutes.

5 Results

5.1 MAX-3SAT Problem Instances

In MAX-3SAT problem instances, the number of clauses and variables plays a
crucial role in determining the difficulty of finding a satisfying assignment. The
challenge of solving all clauses—meaning the instance is fully satisfiable—largely
depends on the clause-to-variable ratio. When this ratio is low, the problem tends
to be easier because there are fewer constraints on variable assignments. Con-
versely, as the ratio increases, the constraints become more restrictive, making
it significantly harder to find an assignment that satisfies all clauses. Research
has shown that for random 3SAT instances, the satisfiability threshold occurs
at a clause-to-variable ratio of approximately ∼4.267[8]. At this critical ratio,
problem instances transition from being mostly satisfiable to mostly unsatisfi-
able when adding more clauses, making them particularly challenging for both
exact and heuristic solvers.

To maintain this complexity, we test two problem instances, one with 2,550
clauses and 600 variables and another with 429 clauses and 100 variables, both
closely adhering to the 4.267 ratio. This ensures that the problem remains dif-
ficult enough to test the effectiveness of GA while still allowing room for high-
fitness solutions to emerge. This is a solvable instance, meaning there exists at
least one variable assignment which allows all clauses to be solved (2,550 and
429 clauses is the optimum for each respective instance). By operating near the
satisfiability threshold, the instance presents a strong challenge, requiring the ge-
netic algorithm to efficiently navigate the search space to maximize the number
of satisfied clauses.

5.2 Hard MAX-3SAT Instances

Initially, we aimed to categorize problem instances into ”hard” and ”easy” based
on their structure. However, in the context of Max-3SAT, such a distinction does
not hold in a meaningful way. While some instances contain a smaller proportion
of satisfiable clauses, our tests showed that both GA+EJ and simple GA per-
formed similarly relative to the optimum (the number of maximum number of
satisfiable clauses) regardless of satisfiability constraints. This suggests that the
presence of fewer satisfiable clauses does not inherently make an instance harder
in a way that affects the comparative performance of our algorithms, rendering
this distinction uninformative for our analysis.



Applying Genetic Algorithm with Saltations to MAX-3SAT 11

5.3 GA+EJ vs. Simple GA

The following two tables contain performance scores for simple GA and GA+EJ
based on 5 runs, where a score is the difference in the number of clauses satisfied
by the algorithm and the optimum (2,550 and 429, since both problem instances
are satisfiable). This metric was chosen because it provides the most clear mea-
sure of how close each algorithm comes to achieving the optimum. Additionally,
the number of generations is reported as the generation at which each algorithm
reached its optimum fitness value, ensuring that comparisons reflect the point at
which the best solution was found rather than when the algorithm terminated.

2550 Clauses / 600 Variables GA+EJ Simple GA

Measure Parents Tourn. Size Clauses Unsat Generations Clauses Unsat Generations

Best 28 35 71 358 72 217
Worst 28 35 89 69 84 35
Average 28 35 78 217.2 79.4 214.6

Best 38 26 52 85 58 240
Worst 38 26 64 196 80 67
Average 38 26 58 258.4 68 161.2

Best 32 41 67 98 63 106
Worst 32 41 81 102 87 68
Average 32 41 75.6 117.8 78 187.4

Best 50 26 44 323 47 320
Worst 50 26 58 272 62 165
Average 50 26 53.8 156.6 53.8 300.2

Table 4. Performance scores measured by number of clauses left unsatisfied. Scores
calculated over 5 runs.

429 Clauses / 100 Variables GA+EJ Simple GA

Measure Parents Tourn. Size Clauses Unsat Generations Clauses Unsat Generations

Best 128 2 3 36 5 37
Worst 128 2 5 44 7 49
Average 128 2 4.2 40 6 42

Table 5. Performance scores measured by number of clauses left unsatisfied. Scores
calculated over 5 runs.

5.4 GA+EJ vs. Simple GA: Analysis

The results in Tables 3 and 4 demonstrate that the genetic algorithm with evo-
lutionary jumps (GA+EJ) generally outperforms the simple genetic algorithm
(GA) in solving the Max3SAT problem. In the larger problem instance , GA+EJ
achieves a lower number of unsatisfied clauses across best, worst, and average
cases in most configurations. For example, with 38 parents and a tournament
size of 26, GA+EJ’s best solution leaves 52 clauses unsatisfied, compared to 58



12 Authors Suppressed Due to Excessive Length

for the simple GA—an improvement of 10.3%. Similarly, in the worst case for
this configuration, GA+EJ leaves 64 clauses unsatisfied, while the simple GA
leaves 80, a 20% reduction. On average, GA+EJ leaves 14.7% fewer unsatisfied
clauses (58 vs. 68).

The smaller problem instance shows an even more pronounced advantage for
GA+EJ. In the best case, GA+EJ leaves only 3 clauses unsatisfied, compared
to 5 for the simple GA, a 40% reduction. The worst case follows a similar trend,
with GA+EJ leaving 5 clauses unsatisfied versus 7 for the simple GA (28.6%
fewer). On average, GA+EJ results in 4.2 unsatisfied clauses, compared to 6 for
the simple GA, marking an overall improvement of 30%.

Although, there are instances where GA+EJ does not consistently outper-
form simple GA. For example, with 32 parents and a tournament size of 41, the
best-case result for GA+EJ is slightly worse (67 unsatisfied clauses) compared
to the simple GA (63 unsatisfied clauses). Additionally, in the same configu-
ration, GA+EJ’s worst-case result (81 unsatisfied clauses) is only marginally
better than the simple GA’s worst case (87), but its average (75.6) is still close
to that of the simple GA (78), suggesting less improvement in this scenario.

Additionally, GA-EJ does not consistently reduce the number of generations
required to reach high-fitness solutions. In some cases, such as the 28/35 and
32/41 settings, GA-EJ requires more generations on average than the standard
GA, despite achieving slightly higher or similar fitness values. This suggests that
while evolutionary jumps help maintain a higher fitness ceiling, they do not al-
ways accelerate convergence. Instead, they may introduce additional variability,
allowing the algorithm to explore alternative solutions rather than prematurely
converging.

However, it is important to note that both algorithms have a predefined
threshold of 300 generations without improvement in global fitness before they
automatically stop running. As a result, the total number of generations before
termination is often larger for the genetic algorithm with evolutionary jumps.
This occurs because evolutionary jumps periodically reintroduce targeted di-
versity into the population, sometimes causing the algorithm to run for many
additional generations before reaching its final optimum. In contrast, the genetic
algorithm without evolutionary jumps tends to converge prematurely; once an
optimal solution is reached at a particular generation, no further improvements
occur, and the algorithm simply continues for the remaining 300 stagnation gen-
erations before termination.

While the benefits of GA+EJ are sometimes configuration dependent, its
overall effectiveness in producing solutions closer to the optimal is evident. These
results indicate that GA+EJ generally enhances genetic diversity and helps the
algorithm escape local optima, with it outperforming simple GA in 12 of the 15
scores reported, demonstrating its consistent ability to find solutions with fewer
unsatisfied clauses. Additionally, in the 429-clause problem, GA+EJ outper-
formed the simple GA in every measured case, achieving up to a 40% reduction
in unsatisfied clauses. Even in the larger 2550-clause problem, where solution
space complexity increases, GA+EJ produced better results in 9 out of 12 cases.



Applying Genetic Algorithm with Saltations to MAX-3SAT 13

Although there were a few instances where the simple GA performed similarly or
marginally better, GA+EJ’s more frequent success in reducing clause violations
indicates a stronger ability to approximate the optimal solution. Its advantage
is most evident in cases where the standard GA requires more generations to
converge, suggesting that evolutionary jumps help escape local optima and drive
long-term improvements in fitness. These findings reinforce the conclusion that
incorporating evolutionary jumps enhances the genetic algorithm’s exploration
of the solution space, ultimately leading to superior optimization performance
in the Max3SAT problem.

6 Conclusion

The results demonstrate a marginal yet consistent improvement in the perfor-
mance of the genetic algorithm when incorporating evolutionary jumps, both in
achieving higher fitness and reaching high-fitness solutions in fewer generations.
This enhancement aligns with the principles of punctuated evolution, where
populations experience periods of stasis followed by sudden leaps in adaptation.
By leveraging Clique-SNV to identify and exploit epistatic interactions, the al-
gorithm introduces structured genetic changes that mimic these evolutionary
jumps, reintroducing tailored diversity into the mating pool and helping escape
local optima. While the improvement is sometimes limited, it underscores the
potential of integrating biological principles into evolutionary algorithms to en-
hance their efficiency in solving complex optimization problems like MAX-3SAT.
Building on these findings, we plan to extend GA+EJ to other optimization
challenges, such as the Traveling Salesman Problem, MAX-SAT instances, and
the multidimensional knapsack. Additionally, we aim to further optimize perfor-
mance by parallelizing the algorithm on GPUs, paving the way for even more
efficient and scalable implementations.

References

1. Andre, M., Lau, L.S., Pokharel, M.D., Ramelow, J., Owens, F., Souchak, J.,
Akkaoui, J., Ales, E., Brown, H., Shil, R., Nazaire, V., Manevski, M., Paul, N.P.,
Esteban-Lopez, M., Ceyhan, Y., El-Hage, N.: From alpha to omicron: How dif-
ferent variants of concern of the sars-coronavirus-2 impacted the world. Biology
(Basel) 12(9) (Sep). https://doi.org/10.3390/biology12091267

2. Corey, L., Beyrer, C., Cohen, M.S., Michael, N.L., Bedford, T., Rolland, M.: Sars-
cov-2 variants in patients with immunosuppression. N Engl J Med 385(6), 562–566
(Aug 2021). https://doi.org/10.1056/NEJMsb2104756

3. Farooq, H., Novikov, D., Juyal, A., Zelikovsky, A.: Genetic Algorithm with Evolu-
tionary Jumps, pp. 453–463 (10 2023). https://doi.org/10.1007/978-981-99-7074-
236

4. Gad, A.F.: Pygad: An intuitive genetic algorithm python library. Multimedia Tools
and Applications pp. 1–14 (2023)

5. Ingraham, N.E., Ingbar, D.H.: The omicron variant of sars-cov-2: Understanding
the known and living with unknowns. Clin Transl Med 11(12), e685 (Dec 2021).
https://doi.org/10.1002/ctm2.685



14 Authors Suppressed Due to Excessive Length

6. Knyazev, S., Tsyvina, V., Shankar, A., Melnyk, A., Artyomenko, A., Malygina, T.,
Porozov, Y.B., Campbell, E.M., Switzer, W.M., Skums, P., Mangul, S., Zelikovsky,
A.: Accurate assembly of minority viral haplotypes from next-generation sequencing
through efficient noise reduction. Nucleic Acids Research 49(17), e102–e102 (07 2021).
https://doi.org/10.1093/nar/gkab576

7. Leung, Y., Gao, Y., Xu, Z.B.: Degree of population diversity - a perspective on prema-
ture convergence in genetic algorithms and its markov chain analysis. IEEE Transac-
tions on Neural Networks 8(5), 1165–1176 (1997). https://doi.org/10.1109/72.623217

8. Mézard, M., Zecchina, R.: Random k-satisfiability problem: From an analytic solution
to an efficient algorithm. Phys. Rev. E 66, 056126 (Nov 2002)

9. Mitchell, M.: An introduction to genetic algorithms. MIT press (1998)
10. Mohebbi, F., Zelikovsky, A., Mangul, S., Chowell, G., Skums, P.: Community structure

and temporal dynamics of sars-cov-2 epistatic network allows for early detection of
emerging variants with altered phenotypes. bioRxiv pp. 2023–04 (2023)

11. Mohebbi, F., Zelikovsky, A., Mangul, S., Chowell, G., Skums, P.: Early detec-
tion of emerging viral variants through analysis of community structure of co-
ordinated substitution networks. Nature Communications 15(1), 2838 (2024).
https://doi.org/10.1038/s41467-024-47304-6

12. Moulana, A., Dupic, T., Phillips, A.M., Chang, J., Nieves, S., Roffler, A.A., Gre-
aney, A.J., Starr, T.N., Bloom, J.D., Desai, M.M.: Compensatory epistasis main-
tains ace2 affinity in sars-cov-2 omicron ba.1. Nat Commun 13(1), 7011 (Nov 2022).
https://doi.org/10.1038/s41467-022-34506-z

13. NA: Tournamentselection(2023), https : //www.tutorialspoint.com/geneticalgorithms/images/tournamentselection.jpg
14. Neverov, A.D., Fedonin, G., Popova, A., Bykova, D., Bazykin, G.: Coordi-

nated evolution at amino acid sites of sars-cov-2 spike. Elife 12 (Feb 2023).
https://doi.org/10.7554/eLife.82516

15. Nielsen, B.F., Li, Y., Sneppen, K., Simonsen, L., Viboud, C., Levin, S.A., Grenfell,
B.T.: Immune heterogeneity and epistasis explain punctuated evolution of sars-cov-2.
medRxiv (Jul 2022). https://doi.org/10.1101/2022.07.27.22278129

16. Rochman, N.D., Faure, G., Wolf, Y.I., Freddolino, L., Zhang, F., Koonin, E.V.:
Epistasis at the sars-cov-2 receptor-binding domain interface and the propi-
tiously boring implications for vaccine escape. mBio 13(2), e0013522 (Apr 2022).
https://doi.org/10.1128/mbio.00135-22

17. Rochman, N.D., Wolf, Y.I., Faure, G., Mutz, P., Zhang, F., Koonin, E.V.: Ongoing
global and regional adaptive evolution of sars-cov-2. Proc Natl Acad Sci U S A 118(29)
(Jul 2021). https://doi.org/10.1073/pnas.2104241118

18. Rodriguez-Rivas, J., Croce, G., Muscat, M., Weigt, M.: Epistatic models predict mu-
table sites in sars-cov-2 proteins and epitopes. Proc Natl Acad Sci U S A 119(4) (Jan
2022). https://doi.org/10.1073/pnas.2113118119

19. Zahradńık, J., Marciano, S., Shemesh, M., Zoler, E., Harari, D., Chiaravalli, J., Meyer,
B., Rudich, Y., Li, C., Marton, I., Dym, O., Elad, N., Lewis, M.G., Andersen, H.,
Gagne, M., Seder, R.A., Douek, D.C., Schreiber, G.: Sars-cov-2 variant prediction and
antiviral drug design are enabled by rbd in vitro evolution. Nature Microbiology 6(9),
1188–1198 (2021). https://doi.org/10.1038/s41564-021-00954-4

20. Zeng, H.L., Dichio, V., Rodŕıguez Horta, E., Thorell, K., Aurell, E.: Global
analysis of more than 50,000 sars-cov-2 genomes reveals epistasis between eight
viral genes. Proc Natl Acad Sci U S A 117(49), 31519–31526 (Dec 2020).
https://doi.org/10.1073/pnas.2012331117


