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Abstract. The online algorithm has been an emerging area of interest
for researchers in various domains of Computing. The online m-machine
list scheduling problem introduced by Graham has gained theoretical as
well as practical significance in the development of competitive analy-
sis as a performance measure for online algorithms. In this paper, we
study and explore the performance of Graham’s online list scheduling
algorithm(LSA) for independent jobs. In the literature, algorithm LSA
has been shown (2 − 1

m
)-competitive, where m is the number of ma-

chines. We present two new upper bound results on competitive analysis
of LSA. We obtain upper bounds on the competitive ratio of 2− 2

m
and

2− m2−m+1
m2 respectively for practically significant two special classes of

input job sequences. Our analytical results can motivate the practition-
ers to design improved competitive online algorithms for the m-machine
list scheduling problem by characterizing the real-life input sequences.

Keywords: Competitive Analysis · Identical Machines · Non-preemptive
· Makespan · Online Scheduling.

1 Introduction

1.1 Online Algorithm

An online algorithm receives and processes inputs one by one in order [1, 2].
Each input is processed immediately upon its availability with no knowledge of
the successive inputs. Since the algorithm has no prior idea about the entire
sequence of inputs, it is constrained to make irrevocable decisions on the fly.
Here, a sequence of outputs is produced by considering the past outputs and the
current input. Suppose, we have a sequence of inputs I = ⟨i1, i2, . . . , in⟩ of finite
size n. The inputs are available to the online algorithm one at a time so that at
any given time t, an input instance it is processed with no clue on the future
inputs it′ , where t′ > t.
Interactive computing is indispensable in various domains such as computer
science, networks, transport, medicine, agriculture, production, and industrial
management [2]. Online algorithms are very much in use as a standard algorith-
mic framework in interactive computing. The requests arrive one by one to the
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interactive system, and each request demands an immediate response. Here, the
system runs an online algorithm that reacts to the current request according to
the desired objectives and with no clue on the entire request sequence. Therefore,
the design and analysis of online algorithms have gained a significant research
interest in practice.

1.2 Competitive Analysis

Competitive analysis [4] provides a theoretical framework to measure the per-
formance of an online algorithm. Here, the performance of an online algorithm
is compared with its corresponding optimum offline algorithm, which knows all
information about the inputs a priori and processes them efficiently by incurring
the smallest cost. Let us consider ALG(I) be the cost incurred by an online
algorithm ALG for any input sequence I and OPT (I) be the optimum cost ob-
tained by the optimum offline algorithm OPT for I. We now define ALG to be
k-competitive for a smallest k ≥ 1, if ALG(I) ≤ k · OPT (I) for all input se-
quences I. Here, k is referred to as the competitive ratio. For a cost minimization
problem, it is always desirable to obtain a competitive ratio that is closer to 1.

1.3 Online List Scheduling

Online List scheduling(LS ) [1] has been a well-studied problem in theoretical
computer science. Here we are given a finite number of jobs in a list and m-
machines(m ≥ 2). The output is the generation of a schedule that represents the
assignments of all jobs over m machines, where the completion time of the job
schedule, i.e., makespan is the output parameter. The objective is to attain a
minimum makespan subject to some non-trivial constraints. The constraints are-
input jobs are given one by one. Each received one must be scheduled irrevocably
as soon as it arrives with no information about the future jobs. The assumptions
are that jobs are non-preemptive and independent.

1.4 Practical and Research Motivation

Online list scheduling finds applications in areas such as multiprocessor schedul-
ing in the interactive time-shared operating systems [2], routing of data packets
on different links with balancing loads of each link in the computer networks [6],
data and information processing in the distributed computing systems [7], robot
navigation and exploration [8].
Online m-machine list scheduling for m ≥ 2 has been proved to be NP-Complete
by a polynomial-time reduction from the classical Partition problem [9]. The real
challenge for designing of near-optimal online scheduling algorithm arises due to
the unavailability of the required information on the entire job sequence before
their processing. An online list scheduling algorithm is influenced by the se-
quence of arrival of the input jobs and their processing times. According to our
knowledge, there is no attempt in the literature to classify and characterize the
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input job sequences for online list scheduling based on real-world inputs. This
motivates us to study and analyze the widely accepted and practically imple-
mented online list scheduling algorithm LSA by exploring and characterizing
special classes of inputs.

1.5 Our Contribution

We characterize the performance of algorithm LSA for online scheduling of in-
dependent jobs on m identical parallel machines and present a simple proof for
2 − 1

m competitiveness. We analyze algorithm LSA on special classes of job se-
quences and obtain two new upper bounds on the competitive ratio as 2 − 2

m

and 2− m2−m+1
m2 respectively.

2 Preliminaries and Related Work

Here, we present some basic terminologies and notations, which we will use
throughout the paper. We then highlight scholarly contributions related to the
online list scheduling setting.

2.1 Basic Teminologies and Notations

– We specify each independent job and identical machine as Ji and Mj respec-
tively, where m machines are represented as Mj(j = 1, . . . ,m) and n jobs
are represented as Ji(i = 1, . . . , n).

– Jobs are independent in the sense that jobs can execute in overlapping time
slots on different machines.

– Machines are identical in the sense that the processing time (pi) of any Ji is
equal for all machines.

– Sometime we refer processing time (pi) of Ji as size of Ji.

– We represent ci as the completion time of any job Ji.

– We denote makespan obtain by any online algorithm A for input sequence I
as C∗

A(I). We have C∗
A(I) = max{ci|1 ≤ i ≤ n}.

– A machine is in idle state when it is not executing any job and we represent
idle time of the machine as φ in the timing diagram.

– Load(lj) of any machine Mj is the sum of processing time of the jobs sched-
uled on Mj . Suppose, n jobs are assigned to Mj , then lj=

∑n
i=1 pi. We may

further define makespan as C∗
A(I)=max{li|1 ≤ j ≤ m}.

– Non-preemptive scheduling of the jobs means once a job Ji with pi starts its
processing on any Mj at time t then it continues with no interruption by
taking all together t+ pi time prior to its completion.
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2.2 Related Work

The m-machine LS problem has been studied for various setups over the years,
see surveys [10-13]. According to our knowledge, the first online scheduling al-
gorithm for multiprocessor systems was proposed by Graham in 1966 popu-
larly known as the list scheduling algorithm(LSA) [1]. He considered the non-
preemptive scheduling of a list of jobs on identical parallel machines. The goal
was to obtain minimum makespan. Algorithm LSA schedules a newly available
job to the most lightly loaded machine. The performance of LSA was proved to
be at most 2− 1

m time worse than the optimum makespan for all job sequences.
Faigle et. al. [5] analyzed the performance of LSA by considering a list of 3 jobs
with sizes (1, 1, 2) respectively and proved that LSA is optimal for m = 2. Simi-
larly, for m = 3, they considered 7 jobs with sizes (1, 1, 1, 3, 3, 3, 6) respectively to
represent the optimum competitiveness of 1.66. They obtained lower bound(LB)
on the competitive ratio of 1.707 for m ≥ 4 by considering a list of 2m+ 1 jobs,
where m jobs are of size 1 unit each, m jobs with size 1 +

√
2 unit each and a

single job is of size 2(1 +
√
2) unit.

The first improvement over LSA was provided by Galambos and Woeginger [14]
and achieved competitiveness of (2− 1

m − ϵm), where ϵm > 0. Bartal et. al. [15]
obtained the upper bound(UB) on the competitive ratio of 1.986 for a general
case of m. For m = 3, they proved LB of 1.4 by considering 7 jobs each with
size (1, 1, 1, 2, 1, 3, 5) unit respectively. Bartal et. al. [17] obtained a better LB
of 1.837 for m ≥ 3454 by examining the job sequence consisting of 4m+ 1 jobs,
where m jobs each with processing time of 1

x+1 unit, m jobs with processing
time of x

x+1 unit each, m jobs are of size x unit each, ⌊m
2 ⌋ jobs are of size y unit

each, ⌊m
3 ⌋−2 jobs each with size z unit, (m+3−⌊m

2 ⌋−⌊m
3 ⌋) jobs are of size 2y

unit each, where x, y, z are positive real values. We now present the summary of
all important results for deterministic online scheduling algorithms for identical
parallel machines in table 1.

Table 1. Summary of Important Results

Year and Author(s) Competitive Ratio(s)

1966, Graham [1] 2− ( 1
m
) for all m.

1991, Galambos and Woeginger [14] 2− ( 1
m

− ϵm) for m ≥ 4.

1992, Bartal et al. [15] 1.986(UB) for allm, 1.4(LB) form = 3.

1996, Karger et al. [16] 1.945, for m ≥ 8.

1994, Bartal et. al. [17] 1.837(LB) for m ≥ 3454

1994, Chen et.al. [18] 1.7310(LB) for m = 4 and 1.8319(LB)
for m > 4.

1999, Albers [19] 1.923, for m ≥ 2.

2000, Fleicher and Wahl [20] 1.9201(UB)

2001, Rudin III [21] 1.88(LB) for all m.

2003, Rudin III and Chnadrasekharan [22] 1.732(LB) for m = 4

2008, Englert et.al. [23] 1.4659 for 2 ≤ m ≤ 30
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2.3 Graham’s Online List Scheduling Algorithm

Here, we present the descriptions of algorithm LSA [1] for independent jobs and
provide proof sketch to show its competitiveness results as follows.

Algorithm 1 LSA
Initially, i=1, l1 = l2 = .............lm = 0
WHILE a new job Ji arrives DO

BEGIN
Calculate current load for each machine Mj .
Number the machines in non-decreasing order of their loads Such that l1 ≤ l2 ≤ ...... ≤

lm.
Assign Ji to M1.
l1 = l1 + pi

i = i + 1.
END

Return lj = max{lj |j = 1, 2, ......m}

Theorem 1. Algorithm LSA is (2− 1
m)-competitive for m ≥ 2.

Proof Let us consider a list of n jobs(J1........Jn). Each job is available to
LSA one by one. The processing time pi > 0 for 1 ≤ i ≤ n. Initially, m
machines(M1, . . . ,Mm) are available with loads l1 = l2 = . . . = lm = 0. Let
the size of the largest job Jk is pk, where pk =max{pi|1 ≤ i ≤ n}. We denote
the optimal makespan as C∗

OPT (I) and makespan obtained by algorithm LSA as
C∗

LSA(I) for all input sequences I. As per the description of LSA, the scheduling
decision time(T ) is constant for each input. Therefore, each time we ignore T ,
while calculating makespan.

Computation of OPT: Optimum offline strategy equally distributes the total
load among all m-machines. So, the completion time of the job schedule is at
least the average of total load incurred on m-machines. Therefore, we have

C∗
OPT (I) ≥ 1

m (
∑n

i=1 pi). (1)

Suppose OPT schedules only Jk on M1 and assigns rest n − 1 jobs on m − 1
machines with equal load sharing among m−1 machines and 1

m−1 (
∑m

i=2 li) ≤ l1,
then we have

C∗
OPT (I) ≥ pk. (2)

We now provide the computation for algorithm LSA : Algorithm LSA assigns a
new job to the machine with least load to keep a balance in the load incurred
on each machine. The worst scenario appears in this case when Jk arrives as
the nth job and prior to that the total load incurred by (n− 1) jobs are equally

shared among m-machines. So, we have l1 ≤ 1
m (

∑n−1
i=1 pi), this compels LSA to

schedule the nth job on M1 i.e the least loaded machine. Therefore, we have
C∗

LSA(I) ≤ 1
m (

∑n−1
i=1 pi) + pk, implies,
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m.C∗
LSA(I) ≤

∑n−1
i=1 pi +m.(pk) ≤

∑n−1
i=1 pi + pk +(m− 1).pk ≤

∑n
i=1 pi +(m−

1).C∗
OPT (I)

C∗
LSA(I) ≤ 1

m (
∑n

i=1 pi) + (m−1
m ).C∗

OPT (I) ≤ C∗
OPT (I) + (m−1

m ).C∗
OPT (I) ≤

C∗
OPT (I)(1 +

m−1
m )

C∗
LSA(I)

C∗
OPT (I) ≤

m+m−1
m ≤ 2m−1

m

C∗
LSA(I) ≤ (2− 1

m )C∗
OPT (I). □

3 New Upper Bound Results on Competitiveness of
Algorithm LSA

We obtain improved competitive ratios of the online deterministic LSA by con-
sidering two special classes of inputs. In this setting, the performance of LSA
is evaluated through the ratio between the makespan obtained by LSA for the
worst sequence of input jobs arrival to the makespan obtained by OPT. The
special classes of input sequences are described as follows.

3.1 Special Classes of Input Job Sequences

Class-1(S1): Here, we consider a list of (m−1)2+1 jobs, where (m−1)2 number
of jobs are of size 1 unit each and a single job is of size m unit.

Class-2(S2): Here, we consider a list of m(m − 1) + 1 jobs, where m(m − 1)
number of jobs are of size 1 unit each and a single job is of size m2 unit.

Theorem 2. LSA is (2− 2
m)-competitive for S1, where m ≥ 3.

Proof Let, C∗
OPT (S1) and C∗

LSA(S1) be the makespan obtained by OPT and
LSA respectively for S1. We ignore T , while scheduling each incoming job.

Computation of LSA: The worst sequence for S1 appears when the input jobs
arrive in the non-decreasing order of their processing time. So, in the worst
case, jobs arrive one by one starting at time t = 0 in the following order
σ1 =

〈
J1, J2, . . . , J(m−1)2 , J(m−1)2+1

〉
, where the jobs from J1 to J(m−1)2 are

of size 1 unit each and the (J(m−1)2+1)
th job is of size m unit. LSA schedules

each job upon its availability and before the arrival of the next job. As we are
ignoring T , so at time t = 0, m jobs are scheduled on m machines in one slot to
complete their processing at t = 1. Therefore, the first m2 − 2m jobs finish at
t = m− 2. Now, at t = (m− 2), we are left with final two jobs of sizes 1 and m
respectively and are allocated to machines M1 and M2. So, the last job finishes
at t = 2m− 2. Therefore, we have

C∗
LSA(S1) ≤ 2m− 2 (3)

We present the Gantt chart of C∗
LSA(S1) in Figure 1.
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Fig. 1. Gantt chart of LSA for class 1

Computation of OPT: Here, the optimum strategy schedules the jobs ac-
cording to the non-increasing order of job’s size. So, at time t = 0, OPT assigns
the largest job with size m unit to a machine along with m − 1 jobs of size
1 unit each to rest m − 1 machines. Subsequently, (m − 1)2 jobs are assigned
and completed at t = m−1 and the last job finishes at t = m. Therefore, we have

C∗
OPT (S1) ≥ m (4)

The Gantt chart of C∗
OPT (S1) is presented in Figure 2.

Fig. 2. Gantt chart of Optimal Scheduling for class 1

From equations (3) and (4) we have
C∗

LSA(S1)
C∗

OPT (S1)
≤ 2m−2

m ≤ (2− 2
m ). OPT and LSA perform equivalently for S1 with

m = 2 as it is required to schedule only 2 jobs. Therefore, it is proved that LSA
is (2− 2

m )-competitive for S1, where m ≥ 3. □
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Theorem 3. LSA is (2− m2−m+1
m2 )-competitive for S2, where m ≥ 2.

Proof Let, C∗
OPT (S2) and C∗

LSA(S2) denote the makespan of OPT and LSA
respectively for S2. We ignore T , while scheduling each incoming job.

Computation of LSA: The worst input job sequence for S2 appears when the
largest job available at the end of the input job sequence. Therefore, the sequence
σ2 = ⟨J1, J2, . . . , Jm2−m, Jm2−m+1⟩ holds the worst sequence for S2 where the
jobs from J1 to Jm2−m are of size 1 unit each and the Jm2−m+1

th job is the
largest job with size m2 unit. Initially at time t = 0, LSA assigns m jobs on m
machines in one slot and finish them at t = 1. Subsequently, m(m− 1) jobs are
scheduled in m− 1 slots and are completed at t = m− 1. Now, at t = m− 1, we
are left with last two jobs of size 1 unit and m2 unit respectively and the load
of each machine is m− 1. So, the last job finishes at t = m− 1+m2. Therefore,
we have

C∗
LSA(S2) ≤ m−1+m2 (5)

We present the Gantt chart of LSA for S2 in Figure 3.

Fig. 3. Gantt chart of LSA for class 2

Computation of OPT: OPT schedules the largest job first. So, at time t = 0,
the largest job Jm2−m+1 is assigned to M1 along with m− 1 jobs to remaining
m−1 machines. In the same fashion, m(m−1) jobs are completed at t = m and
the last job finishes at t = m2. Therefore, we have

C∗
OPT (S2) ≥ m2 (6)
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From equations (5) and (6) we have

C∗
LSA(S2)

C∗
OPT (S2)

≤ 2− (m
2−m+1
m2 ).

As we are not considering the single machine case, so we have LSA is (2 −
m2−m+1

m2 )- competitive for S2, where m ≥ 2. □

4 Conclusion and Future Scope

In this paper, we presented an alternate proof for (2 − 1
m )-competitiveness for

algorithm LSA for independent jobs. We studied and analyzed the performance
of LSA by characterizing the input sequences into two special classes. We showed
that LSA is (2 − 2

m )-competitive for special class(S1) of input sequence, where
we considered (m − 1)2 + 1 jobs with processing times such as 1 unit and m

unit respectively. We also proved that LSA is (2− m2−m+1
m2 )-competitive by con-

sidering another class(S2) of input sequence with m(m − 1) + 1 jobs of with
sizes such as 1 unit and m2 unit respectively. The competitive ratios achieved
by LSA for S1 and S2 input sequence with different number machines are shown
in Table 2. It can be observed from our analytical results that an increase in the
number of machines does not help algorithm LSA to minimize the makespan for
S1. However, the performance of LSA can be improved substantially with the
increase in the number of machines for S2.

Future Scope. It can be realized that the order of availability of the jobs has
a strong influence on the performance of LSA. However, the characterization of
the input sequence with the known total number of jobs and their processing
time can help to improve the competitive ratio of LSA. Through input charac-
terization, theoretical input sequences can be mapped to the real-world input
sequences. It will be interesting to evaluate the performance of well-known on-
line scheduling algorithms for practical input sequences. The performance of
well-known online scheduling algorithms can be improved with better competi-
tive results based on the practical input sequences.

Table 2. Competitive Ratio of LSA for Different Number of Machines

Number of
Machines

CR for Class-1 CR for Class-2

2 1.0000 1.2500

3 1.3333 1.2222

4 1.5000 1.1875

5 1.6000 1.1600

10 1.8000 1.0900

50 1.9600 1.0196

100 1.9800 1.0099
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