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Abstract

The Riemann hypothesis is the assertion that all non-trivial zeros have real

part 1
2
. It is considered by many to be the most important unsolved problem

in pure mathematics. There are several statements equivalent to the famous

Riemann hypothesis. In 1983, Nicolas stated that the Riemann hypothesis

is true if and only if the inequality
∏

q≤x
q

q−1
> eγ · log θ(x) holds for all

x ≥ 2, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-

Mascheroni constant and log is the natural logarithm. In this note, using

Nicolas criterion, we prove that the Riemann hypothesis is true.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function

has its zeros only at the negative even integers and complex numbers with

real part 1
2
. It was proposed by Bernhard Riemann (1859). The Riemann

hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list of
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twenty-three unsolved problems. This is one of the Clay Mathematics Insti-

tute’s Millennium Prize Problems. In mathematics, the Chebyshev function

θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to

x, where log is the natural logarithm. Leonhard Euler studied the following

value of the Riemann zeta function (1734).

Proposition 1.1. It is known that[1, (1) pp. 1070]:

ζ(2) =
∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number.

Proposition 1.2. For x ≥ 3 we have [2, Lemma 6.4 pp. 370]:(∏
q>x

q2

q2 − 1

)
≤ exp

(
2

x

)
.

We say that Nicolas(x) holds provided that∏
q≤x

q

q − 1
> eγ · log θ(x),

where γ ≈ 0.57721 is the Euler-Mascheroni constant. Next, we have the

Nicolas Theorem:

Proposition 1.3. Nicolas(x) holds for all x ≥ 2 if and only if the Riemann

hypothesis is true [3, Theorem 3 (b) pp. 376].
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In number theory, Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ

function, where q | n means the prime q divides n. For x ≥ 2, a natural

number Mx is defined as

Mx =
∏
q≤x

q.

We define R(n) = Ψ(n)
n·log logn for n ≥ 3.

Proposition 1.4. Unconditionally on Riemann hypothesis, we know that [4,

Proposition 3. pp. 3]:

lim
x→∞

R(Mx) =
eγ

ζ(2)
.

Putting all together yields a proof for the Riemann hypothesis.

2. Central Lemma

The function f was introduced by Nicolas in his seminal paper [3, Theo-

rem 3 pp. 376]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

This is a key Lemma.

Lemma 2.1. The Riemann hypothesis is true when

exp

(
2√
x

)
≥ f(x)

for large enough x.

Proof. When the Riemann hypothesis is false, then there exists a real num-

ber b < 1
2
for which there are infinitely many natural numbers x such that
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log f(x) = Ω+(x
−b) [3, Theorem 3 (c) pp. 376]. According to the Hardy and

Littlewood definition, this would mean that

∃k > 0,∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y
, but we note

that

lim
y→∞

(
k · y−b · √y

)
= ∞ > 2

for every possible positive value of k when b < 1
2
. In this way, this implies

that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) >
2
√
y
.

Hence, if the Riemann hypothesis is false, then there are infinitely many

natural numbers x such that log f(x) > 2√
x
. So, if we have

2√
x
≥ log f(x)

for large enough x, then the Riemann hypothesis cannot be false. By Reduc-

tio ad absurdum, the proof is done.

3. Main Theorem

This is the main theorem.

Theorem 3.1. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

exp

(
2√
x

)
≥ f(x)
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for large enough x by Lemma 2.1. That is equivalent to

exp

(
2√
x

)
·

(∏
q≤x

q2

q2 − 1

)
·R(Mx) ≥ eγ.

We know that

exp

(
2√
x

)
·

(∏
q≤x

q2

q2 − 1

)
≫ ζ(2)

where ≫ means “much greater than” by Propositions 1.1 and 1.2. Moreover,

we know that

R(Mx) ∼
eγ

ζ(2)
when (x→ ∞)

by Proposition 1.4. Consequently, the inequality

exp

(
2√
x

)
·

(∏
q≤x

q2

q2 − 1

)
·R(Mx) ≥ eγ

necessarily holds for large enough x.
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