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Abstract 

Distributed Denial of Service (DDoS) attacks represent a significant and evolving threat within the realm of 

cybersecurity. In Software-Defined Networking (SDN), leveraging Machine Learning (ML) and Deep 

Learning (DL) techniques has proven to be a promising strategy for detecting and mitigating these attacks. 

This systematic literature review (SLR) provides a comprehensive analysis of current research in this field. 

The findings illustrate the versatility of ML and DL models in adapting to various attack vectors, their 

capacity for real-time decision-making, and their resilience against adversarial threats. However, challenges 

remain, including optimizing performance, ensuring scalability, enhancing resource efficiency, improving 

model interpretability, and addressing ethical considerations. The SLR highlights the critical importance of 

having labeled datasets, fostering ethical and legal awareness, and preparing network administrators for 

collaborative engagement with ML and DL-based DDoS mitigation systems. As the cybersecurity landscape 

continues to evolve, this review underscores the ongoing effort required to fully exploit the potential of ML 

and DL in protecting SDN networks against DDoS threats 

1. Introduction: 

Software-defined networking (SDN) has been recommended as the future of internet architecture in light of the 

rising need for high-quality multimedia content. Decoupling the control plane (the network's "brains") from the data 

plane (its "muscles") is a fundamental tenet of this networking model [1]. SDN models include both southbound and 

northbound APIs, in addition to SDN controllers. With this design, a centralized and programmable network is made 

available, allowing for the dynamic provisioning of services [2]. OpenFlow (OF) is an industry-standard, publicly-

available protocol used in software-defined networking that defines how a centralized controller sets up and 

manages a network's control layer. Mac tables and routing tables store data in SDN, and a number of complex 

switching and routing protocols manage it. In conventional networks, these tables are used to form the forwarding 

plane [3].  

The internet is crucial for modern society's commercial transactions, educational opportunities, and interpersonal 

connections. Criminal behavior like hacking, disseminating false information, and denial-of-service (DoS) assaults 

have all increased along with the internet's many positive effects. When an authorized service, system, or network is 

intentionally rendered unavailable to its intended users, this is known as a denial of service attack. The goal of a 

Distributed Denial of Service (DDoS) attack, a subset of Denial of Service (DoS) assaults, is to interrupt normal 

traffic to a single target by infiltrating numerous systems . 

When compared to conventional networks, SDN makes it harder to prevent denial-of-service and distributed denial-

of-service attacks. The performance of computer networks has suffered as a result of these assaults, which pose a 
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serious danger due to their ability to drain resources and disable services. An efficient denial of service or distributed 

denial of service attack drains resources and blocks host access to the targeted service on purpose. With SDNs, a 

denial-of-service (DoS) or distributed denial-of-service (DDoS) attack may cripple the network by hogging 

bandwidth on the control plane, the data plane, or both. Because of the OpenFlow switch's limited flow table RAM, 

packets may be discarded and new flow rules may not be installed if the switch is under assault on the data plane. It 

is possible that a significant number of erroneous flows will be generated as part of a data plane DoS/DDoS attack. 

The switch buffers these packets, and when it is full, it sends the complete packet to the controller via packet-in 

messages rather than simply the packet's headers. This may lead to longer wait times when implementing new flow 

rules and increased demands on available communication bandwidth [5]. DDoS attacks involve a network of devices 

under the attacker's control, whereas DoS attacks use several internet connections to knock the victim's computer 

network down. Due to the dispersed nature of DDoS attacks and the massive attack volumes often used, they are 

more difficult to identify and track. While a DoS attack may be launched by a script or a dedicated instrument like 

the Low-Orbit Ion Cannon, a Distributed Denial of Service (DDoS) attack is executed in a different way. Buffer 

overflows, Internet Control Message Protocol floods, tears, and flooding are all examples of DOS attacks, whereas 

volumetric attacks, fragmentation attacks, application layer attacks, and protocol attacks are all examples of DDOS 

attacks. Because they include several systems, DDoS attacks are more devastating than DoS attacks. However, it is 

more difficult for security teams and products to identify the origin of the attack. Traditional computer networks are 

distinct in many perspectives when compared with software defined networks. 

1.1 Comparison of Traditional Computer Networks (CN) and Software-Defined Networks (SDN): 

Perspective Traditional Computer Networks Software-Defined Networks 

Architecture 

• These networks have a fixed and 

hardware-based architecture, with 

separate network devices (such as 

routers and switches) responsible for 

data forwarding and control functions.                           

• The network configuration is often 

static. 

• SDN separates the control plane from 

the data plane. It centralizes network 

control in a software-based controller, 

making the network more flexible and 

programmable.  

• This allows for dynamic 

reconfiguration of the network 

Control 

Control in CNs is distributed across individual 

network devices. Configuration changes are 

typically manual and device-specific. 

SDN provides centralized network control, 

allowing administrators to define network 

behavior through software. This 

centralization offers more granular control 

and easier management. 

Flexibility 

CNs are often less flexible and require 

substantial manual configuration. Changes 

may require device-specific commands and 

are less adaptable to dynamic needs. 

SDNs are highly flexible and adaptable. 

Network behavior can be adjusted in real-

time through software, making it easier to 

respond to changing network conditions and 

requirements. 

Scalability 

Scaling a traditional network often involves 

adding more physical hardware, which can be 

expensive and time-consuming. 

SDNs can be more easily scaled because 

changes can be implemented through 

software, and virtual network resources can 

be dynamically provisioned as needed. 

Security 

Security measures in CNs are typically 

device-centric, with firewalls, intrusion 

detection systems, and access controls 

implemented on individual devices. 

SDNs offer the potential for more centralized 

and programmatic security policies. Security 

policies can be easily applied across the 

network, and threat detection can be 

integrated with network control. 



 

1.2 DDoS in Traditional networks and Software defined Networks 

DDoS (Distributed Denial of Service) attacks can occur in both traditional computer networks (CN) and Software-

Defined Networks (SDN), but the way these attacks are executed and mitigated may differ due to the fundamental 

differences in the architecture of these two types of networks. 

DDoS in CN (Traditional Computer Network): 

• Centralized Infrastructure: In traditional computer networks, the infrastructure is often more centralized. 

This means that network traffic flows through routers and switches that are not easily reconfigurable during 

an attack. 

• Mitigation Challenges: DDoS attacks in CNs can overwhelm network devices, saturate bandwidth, and lead 

to unavailability of network services. Mitigation often involves configuring network hardware to drop or 

rate-limit malicious traffic, which can be slow and less flexible. 

• Scalability Issues: CNs may struggle to scale their infrastructure to handle sudden increases in traffic 

during a DDoS attack, making them more vulnerable to attacks that use a large number of botnet devices. 

DDoS in SDN (Software-Defined Network): 

• Programmable Infrastructure: SDN decouples the control plane from the data plane and provides a more 

programmable network infrastructure. This means that network behavior can be dynamically adjusted. 

• Mitigation Advantages: In SDNs, DDoS mitigation can be more dynamic and automated. Network 

controllers can detect traffic anomalies and reconfigure network devices in real-time to redirect or drop 

malicious traffic. 

• Isolation and Segmentation: SDNs can create isolated network segments and apply fine-grained policies to 

limit the impact of DDoS attacks. This can help prevent the attack from affecting the entire network. 

• Granular Control: SDNs provide granular control over network traffic, which allows for more efficient 

traffic filtering and redirection during an attack. 

The key contribution of a literature review paper on Software-Defined Networking (SDN) is to provide a 

comprehensive synthesis of the existing body of knowledge on SDN, offering a valuable resource that summarizes 

essential concepts, identifies research gaps, and highlights trends, ultimately serving as an informative guide and 

reference for researchers, students, and practitioners in the field. 

2. SDN Architecture 

The phrase "software-defined networks" (SDN) is used to refer to a network design where the forwarding status of 

the data plane is managed by a third-party control plane. By separating the forwarding and control activities of a 

network, this architecture allows network control to be directly programmable and gives applications and network 

Management 

Network management in CNs is often 

complex and may involve multiple 

management systems for different network 

elements. 

SDNs provide a more unified and centralized 

management approach, simplifying network 

administration 

Cost 

Initial setup and ongoing operational costs can 

be high due to the need for physical hardware 

and manual configuration. 

SDNs may reduce operational costs over time 

due to automation and centralized control, 

but initial deployment costs for SDN 

infrastructure can be a consideration. 



services access to an abstraction layer over the underlying infrastructure. The three layers and three interfaces listed 

below make up the backbone of the SDN design. 

2.1  The Data Plane 

The data plane is made up of the network's packet-forwarding devices. Various protocols are supported for sending 

and receiving data between the end hosts and the remote peers that manage the communication. Instead of 

physically separating the control plane from the data plane, SDN does it in software [1]. SDN/OpenFlow-enabled 

switch solutions include Switch Light, Open vSwitch, Pica8, Pantou, XorPlus, etc.. 

2.2 The Control Plane 

The SDN controller, which is part of the control plane, decides where data should be delivered. This "network brain" 

is represented by the SDN control plane. The controller's principal function is to act as a mediator between the 

network's data layer and the applications that are using that layer. By moving the control plane into software, it will 

be easier to implement changes and streamline operations. A network administrator may make rule and 

configuration changes to several switches without leaving the control room. There are now around twenty SDN 

controllers out there. In this part, we provide a list of all relevant open-source SDN controllers that are both free to 

use and functional. One popular SDN controller that is compatible with the OpenFlow protocol is Java's Project 

Floodlight controller. Floodlight can be used with module apps as well as RESTful apps. Module applications are 

those developed using the controller and are written in Java. These systems are simultaneously running and are 

included into the programming for the floodlights. To communicate with the controller, REST applications must use 

the RESTful API that is made available by Floodlight. You may query the controller for data and provide it the latest 

information about your trip arrangements using this interface. Disengaging the controller from TCP/IP traffic is one 

way to stop malicious network application injection [16], although the RESTful API is less versatile than the module 

application API when it comes to interfacing with the controller. 



 

Figure 1 SDN architecture 

2.3 The Application Plane 

The term "application plane" is used to describe all the programs that utilize the northbound interface's capabilities 

to provide the logic necessary to run a network. Included are programs like routers, firewalls, ACLs, load balancers, 

monitors, IDS, scan detectors, DDoS attack mitigation methods, and so on (see Figure 1.2 for details). [19] . To put 

it simply, a network application defines the rules, and those rules are subsequently translated into southbound-

specific instructions that regulate the activities of the forwarding devices. IDS network software, for instance, may 

monitor traffic, user activity, packet payload, and other system-wide metrics. If contaminated data packets could be 

automatically filtered away after being identified as malicious, it might greatly reduce the spread of infection. 

However, many issues with security in the deployment of network applications still need to be addressed. 

3. Role of ML/DL Techniques for Detecting DDoS Attacks 

Machine Learning (ML) and Deep Learning (DL) techniques play a significant role in the detection of Distributed 

Denial of Service (DDoS) attacks in network security. Their roles include: 

• Pattern Recognition: ML and DL models can learn and recognize patterns in network traffic. By analyzing 

historical data and identifying normal traffic patterns, these techniques can detect deviations from the norm, 

which may indicate a DDoS attack. 



 

• Anomaly Detection: ML models, such as Support Vector Machines (SVMs) or neural networks, can be 

trained to identify anomalies in network traffic. DDoS attacks often exhibit unusual behavior, such as a 

sudden surge in traffic, and anomaly detection can flag these events. 

• Real-time Monitoring: ML/DL models can continuously monitor network traffic in real time. They can 

process large volumes of data quickly, making them suitable for identifying sudden and rapid changes in 

traffic associated with DDoS attacks. 

• Adaptive Detection: ML/DL models can adapt to evolving attack techniques. As attackers develop new 

methods, ML models can be retrained to detect these emerging threats, offering more robust defense 

mechanisms. 

• Feature Engineering: ML and DL practitioners can engineer features from network traffic data to enhance 

detection. These features may include packet size, packet rate, protocol distribution, entropy, and other 

relevant characteristics that help distinguish normal traffic from DDoS attacks. 

• Behavioral Analysis: Deep Learning techniques like Recurrent Neural Networks (RNNs) can analyze 

temporal dependencies in network traffic data. This allows them to capture deviations from expected 

network behavior, which is valuable in DDoS detection. 

• Packet Analysis: ML/DL models can examine packet-level data to identify malicious patterns, including 

characteristics like packet size, source/destination IP addresses, and payload content. 

 

Figure 2: Methodology for generalized machine learning/deep learning-based DDoS detection systems 



• Flow-Based Analysis: Convolutional Neural Networks (CNNs) can be applied to flow data, describing 

network connections between hosts. CNNs can extract features and identify patterns that are indicative of 

DDoS attacks. 

• Hybrid Approaches: Combining ML/DL techniques with traditional network-based approaches, such as 

rate limiting and blacklisting, can provide a multi-layered defense against DDoS attacks. ML models can 

identify attacks, while traditional mechanisms can be used for mitigation. 

• Transfer Learning: Pre-trained models, often used for different tasks or in a general domain, can be fine-

tuned for DDoS detection. Transfer learning makes models more effective in identifying new and evolving 

attack patterns. 

• Multi-Modal Detection: Combining multiple types of data sources, such as flow data, packet data, and 

network logs, provides a more comprehensive view of network activity. This enhances the accuracy of 

DDoS detection. 

• Scalability: ML/DL techniques can handle large volumes of data and scale efficiently to analyze network 

traffic across complex infrastructures, making them suitable for both small and large-scale networks. 

• Automated Response: ML/DL models can be integrated into automated response systems, allowing for 

immediate actions when DDoS attacks are detected, such as traffic rerouting or rate limiting. 

 

4. Review of Machine learning Approaches to Mitigate DDoS attacks in SDN 

This section provides an in-depth review of the various ML-based methods available for identifying and protecting 

SDN networks against DoS and DDoS assaults. Based on their methodology, ML approaches can be broken down 

into the first group, which focuses on improving existing ML methods by using multiple ML algorithms in concert 

to boost overall performance (especially detection accuracy), the second group, which focuses on developing new 

ML-based approaches by hybridizing or relying on multiple ML algorithms, and the third group, which focuses on 

investigating a single ML classification algorithm. The most important results from each research are highlighted 

here, and a summary table comparing the strengths and weaknesses of different ML methods is provided. The 

following provides a comprehensive analysis of various methods. 

4.1 Ensemble ML Methods 

Multiple classifiers may be used in an ensemble technique, and the ensemble itself may be made up of various 

machine learning classifiers. Multiple separate classifiers may be combined to complete the training process. An 

optimal weighted voting ensemble (OWVE) model is proposed to identify and mitigate distributed denial of service 

(DDoS) assaults. Different hyperparameter settings are used for the SVN, RF, and GBMC in the ensemble model. 

For the CIC-DDoS-2019 and CAIDA-2007 datasets, respectively, the ensemble model demonstrates a high 

classification accuracy of 99.41% and 99.35%. To defend SDN against DDoS assaults, the voting-based intrusion 

detection framework, an ensemble ML model, was suggested in ref. [1]. Using the UNSW-NB15, CICIDS2017, and 

NSL-KDD datasets for training and testing, the suggested voting model outperformed the competition in terms of 

detection accuracy. 

To better categorize and detect DDoS assaults, the researchers at ref. [2] created an ensemble ML approach using K-

mean and RF. After extensive training and testing on the InSDN dataset, the suggested system showed a flawless 

detection accuracy of 100%. K-NN, naive Bayes (NB), support vector machine (SVM), and self-organizing map 

(SOM) algorithms were presented as part of an ensemble ML for anomaly detection in [3]. Models are tested and 

prioritized using data from CAIDA's 2016 dataset. The detection accuracy and false-positive rates of the ensemble 

technique were, however, poor for both the ensemble and the single ML algorithms. 

4.2 Hybrid Machine Learning Methods 



Multiple hybrid ML-based strategies, including [4], used a combination of SVM and random forest (RF) 

classification algorithms to distinguish between benign and malicious traffic. A genuine SDN dataset was used to 

test and assess the method, with positive results: high accuracy (98.8 percent) and low numbers of false alarms. In 

order to improve the classification performance of identifying DDoS flooding assaults against OpenFlow switches 

and SDN controllers, the authors of ref. [6] presented a hybrid technique based on SVM and SOM. The method was 

evaluated using the CAIDA dataset, where it showed a detection rate of 98.13 percent and an accuracy of 97.2 

percent. 

For real-time detection systems, Ref. [7] looked at P4 programmability and K-NN, RF, SVM, and ANN algorithms. 

They suggested using a DDoS attack detection (DAD) system that operates automatically. Overall, the DAD method 

has a detection rate of 98% for SYN flood assaults on local SDN switches. The decision tree (DT), naive Bayes 

(NV), support vector machine (SVM), and RF techniques were used to defend the SDN controller against DDoS 

assaults in Ref. [8]. The method was tested on the NSL-KDD dataset, where it performed well for DT (99.97%) but 

poorly for SVM (60.19%). 

In order to study and identify TCP-SYN flood DDoS assaults against the SDN controller, researchers in ref. [9] 

looked into a number of ML classification models, including DT, random forest (RF), AdaBoost (AB), multiayer 

perceptron (MLP), and logistic regression (LR). All categorization models tested showed significant improvement 

over the baseline. K-NN, DT, ANN, and SVM are only some of the ML techniques used by ref. [10] to determine 

whether or not packets traversing an SDN network were part of a DDoS assault. They demonstrated that among 

classification algorithms, DT has the highest accuracy (99.75%) while SVM has the lowest (81.48%). 

The model for detection and classification based on ML was presented in ref. [11]. To identify TCP, UDP, and 

HTTP flood DDoS assaults, they used four common classifiers: K-NN, quadratic discriminant analysis (QDA), 

Gaussian naive Bayes (GNB), and classification and regression tree (CART). When compared to other methods, 

CART excels in terms of both prediction accuracy (98%) and speed of prediction (12.4 ms on average during 

training). An method to DDoS attack detection and mitigation was presented in ref. [12]. They started using a 

support vector machine (SVM) for classification, then used kernel principal component analysis (KPCA) as an 

approach for selecting features, and then improved the SVM's settings with a genetic algorithm (GA). The detection 

accuracy of the suggested model was 98.907%. 

More than one ML algorithm is used by various methods, as seen in [13]. To defend an SDN network from DDoS 

assaults, they used six different machine-learning algorithms: NB, SVM, K-NN, extreme gradient boosting 

(XGBoost), DT, and RF. The XGBooSt method achieves 99.7% accuracy, whereas the other algorithms only get 

about 80%. The authors of ref. [14] developed a strategy to identifying DDoS assaults using DT and SVM 

algorithms. The KDD CUP dataset was used to test and evaluate the suggested method. However, they performed 

poorly. The accuracy rates of DT and SVM, for instance, are just 78% and 85%. 

In order to identify DDoS assaults in an SDN setting, the authors of ref. [15] use four ML classification algorithms 

(i.e. KNN, SVM, ANN, and NB). KNN was shown to have the highest detection accuracy (98.3%) of the 

recommended methods when it came to identifying DDoS assaults when tested on a synthetic dataset. The detection 

accuracy of the remaining ML classifiers, in comparison, was only moderate. In [16], the authors presented a 

malleable IDS to detect and stop SDN DDoS assaults at low rates. They use the CIC-DoS-2017 dataset for their 

evaluations after training the IDS with six different ML algorithms (including RT, REP tree, RF, SVM, MLP, and 

J48). The suggested IDS was successful in detecting 95% of threats. 

An attack detection framework using K-Means and K-NN algorithms was developed in ref. [17]. To lessen the 

burden on the controller, they implemented a detection trigger method using the data plane switches. Both simulated 

and NSL-KDD datasets were used to test the framework, and both showed excellent detection accuracy. For the 

purpose of accurate attack detection and optimum network resource usage, the authors of reference [18] suggested a 



DDoS attack mitigation strategy for the SDN network that relies on a bandwidth-control mechanism and the extreme 

gradient boosting (XGBooST) algorithm. The method was tested in an SDN environment, where it was shown to be 

99.9% accurate with a low false-positive rate. The controller is also used in the suggested system. 

The "Artificial Immune System-IDS" (AIS-IDS) was suggested in ref. [19], and it was modeled after the human 

immune system. The suggested method takes biologically-inspired fuzzy logic into account to fully automate the 

process of detecting and fixing network anomalies. It was shown to outperform other classifiers on both simulated 

and CICDDoS 2019 datasets in terms of detection accuracy and other performance parameters. Furthermore, the 

SDN controller was updated to make use of the suggested method. An SVM-based, DT-based, NB-based, and LR-

based method for detecting DoS and DDoS assaults in an SDN network was presented in ref. [20]. SVM obtained 

97.5% accuracy, NB and DT at 96%, and LR at 89.98% when tested on a simulated dataset. 

A method for identifying Distributed Denial of Service attacks was presented in ref. [21] using SVM, DT, K-NN, 

and BN classifiers. Training and testing on the NSL-KDD dataset revealed that the DT classifier had the highest 

detection rate (95.16 percent). To identify TCP SYN and UDP flood DDoS assaults against the SDN controller and 

flow-table switch and bandwidth saturation attacks, the authors of ref. [22] used MLP, RF, SVM, and DT 

algorithms. The suggested model was evaluated and trained using a synthetic dataset, which revealed that 

classification results for the controller DDoS assault were worse (less than 90% accuracy for SVM and MLP) 

compared to those for the flow-table switch and bandwidth attacks. The algorithms SVM, J48, and NB were 

presented as a protection mechanism against DDoS assaults in ref. [23]. The suggested defensive system achieved a 

99.40% detection accuracy for classification after being trained and tested on the NSL dataset. 

In order to protect against DDoS and port scan assaults, the researchers at reference [24] designed a fast SDN 

defensive system that would analyze IP flow traffic every five seconds. Particle swarm optimization (PSO), multi-

layer perceptron (MLP), and discrete wavelet transform (DWT) are used in the suggested system, which is 

implemented on the SDN controller and used to identify anomalies. It also employs a game-theoretic strategy to 

reduce the impact of distributed denial-of-service assaults. All assaults, including DDoS and port scans, are being 

detected by the suggested security system, and the SDN has been successfully restored thanks to the mitigation 

approaches. Finally, Ref. [25] developed a method for classifying and detecting DDoS (i.e., HTTP, UDP flooding 

assaults, and Smurf) based on seven ML algorithms (i.e., K-NN, RF, NB, SVM, linear regression (LR) DT, and 

ANN). All classification methods benefit from the proposed method's high average detection accuracy, which is 

applied at the SDN controller. 

Table 1: ML Approaches for Mitigating DDOS in SDN 

Reference Approach 
ML/Ensemble 

Models 
Datasets Used 

Detection 

Accuracy 
Drawbacks 

[1] 

Voting-Based 

Intrusion 

Detection 

Framework 

Not specified 

UNSW-NB15, 

CICIDS2017, 

NSL-KDD 

Better than other 

approaches 
Not specified 

[2] 
K-Mean and RF 

Ensemble 
K-Mean, RF InSDN 100% Not specified 

[3] Ensemble Model 

K-NN, Naïve 

Bayes, SVM, Self-

Organizing Map 

CAIDA 2016 

Low detection 

accuracy and 

high false-

positive rates 

Low detection 

accuracy and 

high false-

positive rates 



[13] 
Multiple ML 

Algorithms 

NB, SVM, K-NN, 

XGBoost, DT, RF 
Not specified 

XGBoost with 

the highest 

accuracy 

(99.7%) 

Not specified 

[14] 
DT and SVM 

Ensemble 
DT, SVM 

KDD CUP 

dataset 

Low 

performance 

(DT: 78%, SVM: 

85%) 

Low 

performance 

[15] 
Multiple ML 

Classifiers 

KNN, SVM, ANN, 

NB 
Synthetic dataset 

KNN with high 

detection 

accuracy 

(98.3%) 

Not specified 

[16] Flexible IDS 
RT, REP tree, RF, 

SVM, MLP, J48 
CIC-DoS-2017 

Moderate 

detection rate 

performance 

(95%) 

Moderate 

detection rate 

performance 

[17] 
K-Means and K-

NN 
K-Means, K-NN 

Synthetic, NSL-

KDD 

High detection 

accuracy 
Not specified 

[18] 

XGBoost and 

Bandwidth 

Control 

XGBoost Not specified 99.9% accuracy Not specified 

[19] 

Artificial 

Immune System-

IDS 

Not specified 
Synthetic, CIC-

DDoS 2019 

High detection 

accuracy 
Not specified 

[20] 
SVM, DT, NB, 

LR 

SVM, DT, K-NN, 

BN 
NSL-KDD 

SVM with the 

highest accuracy 

(97.5%) 

Not specified 

[21] 
SVM, DT, K-

NN, BN 
SVM, DT NSL-KDD 

DT with the 

highest detection 

rate (95.16%) 

Not specified 

[22] 
MLP, RF, SVM, 

DT 

MLP, RF, SVM, 

DT 
Synthetic dataset 

Variable 

performance 

Variable 

performance 

[23] SVM, J48, NB SVM, J48, NB NSL dataset 
99.40% detection 

accuracy 
Not specified 

[24] 

Particle Swarm 

Optimization 

(PSO), MLP, 

DWT 

PSO, MLP, DWT Not specified 

Functional 

performance for 

detection and 

mitigation 

Not specified 

[25] 
Multiple ML 

Algorithms 

K-NN, RF, NB, 

SVM, LR, DT, 

ANN 

Not specified 

High average 

detection 

accuracy 

Not specified 

 

 

 

 



5. Review of Deep learning Approaches to Mitigate DDoS attacks in SDN 

This section covers the use of single DL, hybrid DL, and ensemble DL to identify SDN DDoS assaults. Again, this 

part emphasizes the most important takeaways from each study, followed by a table summarizing the most important 

factors and their constraints. The sections that follow further on DL methods. 

5.1. Ensemble DL Approaches 

The authors of ref. [26] classified DDoS assaults using convolutional neural networks (CNN), gated recurrent unity 

(GRU), and long short term memory (LSTM). In the case of a low number of features, the suggested model trained 

using the CICIDS 2017 dataset obtained a detection accuracy of 99.77 percent. An IDS employing DL ensemble 

methods, including CNN, RNN, and DNN, was presented for DDoS attack detection in ref. [27]. The detection 

accuracy of the CICIDS2017 dataset-trained ensemble model was 99.05%, which is very high. In [28], the authors 

suggest yet another CNN-based ensemble solution to detecting DDoS assaults on SDNs. When tested on the ISCX 

2012 dataset, the ensemble model showed a 98.48% accuracy rate in its detection capabilities. 

5.2. Hybrid DL Approaches 

In order to identify traffic irregularities brought on by DDoS assaults, CNN and LSTM are utilized in ref. [29]. 

When tested on the InSDN dataset, the suggested method was shown to have a detection accuracy of 96.32 percent. 

A hybrid DL model implemented on the SDN controller was presented in ref. [30]. In order to spot DDoS assaults as 

soon as they begin, they use DL algorithms like CNN and LSTM. When tested on the CICIDS2017 dataset, the 

hybrid method showed excellent detection accuracy (99.45%). Reference [31] described a method for detecting low-

rate SDN DDoS assaults using CNN and LSTM, which would be implemented on the SDN controller. The 

suggested method was tested on a simulated data set, where it performed over 99% of the time. To prevent 

Distributed Denial of Service (DDoS) assaults, [32] suggested using an RNN, GRU, and LSTM on the SDN 

controller. Using the InSDN dataset, they found that their suggested method had a high rate of correct detections. 

After looking at several classifiers, such as LSTM and CNN, the authors of ref. [33] presented a way to safeguard 

the SDN controller against DDoS assaults. When tested on the synthetic dataset, the suggested method only 

managed a detection accuracy of 89.63%. A method for identifying SDN DDoS assaults using an RNN equipped 

with an autoencoder is proposed in ref. [34]. The suggested approach was tested on the CICDDoS-2019 dataset, 

where it outperformed previous ML methods in terms of detection accuracy, achieving a rate of 99%. To identify 

previously unknown DDoS assaults, reference [35] presented a DL-based IDS (DeepIDS). DNN and GRU-RNN 

(gated recurrent neural network) techniques are used. The suggested system was tested on the NSL-KDD dataset, 

where it performed poorly (80.7% for DNN and 90% for GRU-RNN). 

RNN and GRU were used by the authors of Reference [36] to enhance the performance of their anomaly-based IDS 

for SDN networks. The suggested method was trained, tested, and evaluated using the NSL-KDD and CICIDS2017 

datasets; on the former, it achieved an accuracy of 89% in detecting DDoS assaults, while on the latter, it achieved 

an accuracy of 99%. CNN, RNN, and LSTM algorithms were presented as a detection method for DoS assaults in 

ref. [37]. The ISCX 2012 dataset was used to test the effectiveness of the suggested method. For DDoS assaults, the 

suggested model has a 98% verification accuracy on test data and a 99% accuracy on training data. 

It was suggested in ref. [38] that SDN network traffic be classified as either normal or abnormal (attack) using an 

IDS based on GRU and RNN (GRU-RNN). Regrettably, the suggested method only managed an 89% and 90% 

detection rate for regular and attack traffic, respectively. Using entropy to identify faked switch ports and a 

convolutional neural network (CNN) as a classifier to improve accuracy and efficiency while decreasing training 

costs, the authors of reference [39] suggest a two-tiered approach to DDoS attack detection in SDN networks. This 

resulted in a high level of accuracy for the DL model (98.98%) but low levels of accuracy for information entropy 



(92.37%) and the two-level technique (96.97%) using the suggested strategy. CNN and a transformer (made up of an 

encoder and a decoder) were presented as part of a hybrid solution to detecting DDoS assaults in ref. [40]. The 

suggested method was evaluated on the CICDDoS2019 dataset and outperformed all other methods. 

5.3. Single DL Approaches 

Several methods use a single DL algorithm to identify assaults as early as feasible, such as [41], which presented a 

controller-based security solution. Using the InSDN dataset for training and evaluation, the suggested method was 

able to achieve both high accuracy in traffic categorization and low latency and high throughput. Concurrently, a 

GRU-based SDN defensive system for DDoS attack detection was presented in Ref. [42]. In order to mitigate the 

impact of attacks on SDN, the suggested system examines each traffic record for IP flows. The method was put to 

the test on two different situations and two different datasets (CICDDoS 2019 and CICIDS 2018), with successful 

results in both cases. 

An SDN controller-based detection and protection system was presented in ref. [43]. In order to identify DDoS 

assaults, the system employs a GAN. In the first scenario, when the suggested defensive system was tested, 99.78% 

of DDoS attacks were detected; in the second scenario, where the CICDDoS 2019 dataset was used, the detection 

rate dropped to 95.54%. To identify DDoS assaults, the authors of ref. [44] use the stacked autoencoder multi-layer 

perceptron (SAE-MLP) method. The suggested method was trained and evaluated using a genuine SDN dataset, and 

it was able to reach a 99.75% accuracy in its identification. 

To better identify intrusions, the authors of ref. [45] presented an IDS built on the CNN algorithm. The suggested 

method was put through its paces on the InSDN dataset, where it scored a 94.01% detection accuracy. DNN was 

investigated by Makuvaza et al. [46] for detecting SDN DDoS assaults. The suggested method was tested on the 

CICIDS 2017 dataset and found to have a detection accuracy of 97.25 percent. Similarly, the bi-directional recurrent 

neural network (BRNN) technique was studied by Ref. [47] to categorize SDN DDoS assaults. The suggested 

method was trained and evaluated on a synthetic dataset, where it showed a detection accuracy of 99.21%. 

TCP, UDP, ICMP, and SYN flood DDoS assaults may be mitigated in an SDN network environment with the help 

of a real-time mitigation agent based on deep reinforcement learning, as presented in ref. [48]. Therefore, while the 

mitigation agent is active, around 85% of typical traffic is able to reach the server. An IDS was suggested by 

Arivudainambi et al. [49] that uses the lion optimization algorithm (LOA) to pick features and a convolutional 

neural network (CNN) to classify DDoS attacks. When tested on the NSL-KDD dataset, the suggested method has a 

classification accuracy of 98.2 percent. An SDN controller network application was presented in [50] to monitor for 

control and data plane DDoS assaults. The suggested method uses the stacked autoencoder (SAE) to identify TCP, 

UDP, and ICMP DDoS assaults in SDN network settings. Therefore, the suggested system can identify the kinds of 

DDoS attacks with a success rate of 95.65%. 

To keep tabs on network activity, the authors of ref. [51] integrated a network intrusion detection system (NIDS) 

into the SDN controller. The proposed NIDS makes use of DNN to identify aberrant flows in SDN networks and 

label them as normal or not. When tested on the NSL-KDD dataset, however, their suggested NIDS obtained only a 

75.75% level of accuracy. Ref. [52] proposes a solution that employs an unsupervised restricted Boltzmann machine 

algorithm to identify SDN DDoS assaults. After being tested on a fabricated dataset, the suggested system showed a 

92% detection rate with an 8% false-positive rate. Table 7 provides a concise summary of the DL-based methods 

and their shortcomings. 

 

 

 



Table 1: DL Approaches for Mitigating DDOS in SDN 

Reference Approach DL Models Datasets Used Detection Accuracy Limitations 

[26] 

CNN, GRU, 

LSTM 

Ensemble 

CNN, GRU, 

LSTM 
CICIDS 2017 99.77% Not specified 

[27] DL Ensemble CNN, RNN, DNN CICIDS2017 99.05% Not specified 

[28] 
CNN-Based 

Ensemble 
CNN ISCX 2012 98.48% Not specified 

[29] 
CNN and 

LSTM 
CNN, LSTM InSDN 96.32% Not specified 

[30] 
Hybrid DL 

Model 
CNN, LSTM CICIDS2017 99.45% Not specified 

[31] 
CNN and 

LSTM 
CNN, LSTM 

Synthetic 

dataset 
More than 99% Not specified 

[32] 
RNN, GRU, 

LSTM 

RNN, GRU, 

LSTM 
InSDN 

High detection 

accuracy 
Not specified 

[33] 
Investigative 

Classifiers 
LSTM, CNN 

Synthetic 

dataset 
89.63% 

Low detection 

accuracy 

[34] 
RNN with 

Autoencoder 
RNN 

CICDDoS-

2019 
99% Not specified 

[35] DeepIDS DNN, GRU-RNN NSL-KDD 
80.7% (DNN), 90% 

(GRU-RNN) 

Lower detection 

accuracy 

[36] 
RNN and 

GRU 
RNN, GRU 

NSL-KDD, 

CICIDS2017 

89% (NSL-KDD), 

99% (CICIDS2017) 

Variable 

detection rates 

[37] 

CNN, RNN, 

LSTM 

Ensemble 

CNN, RNN, 

LSTM 
ISCX 2012 

98% (test data), 99% 

(training data) 
Not specified 

[38] 
GRU and 

RNN 
GRU, RNN Not specified 

89% (normal traffic), 

90% (attack traffic) 

Relatively low 

detection 

accuracy 

[39] 

Two-Level 

DDoS 

Detection 

CNN Not specified 

98.98% (DL model), 

92.37% (two-level 

method) 

Lower accuracy 

for information 

entropy 

[40] 
CNN and 

Transformer 

CNN, 

Transformer 
CICDDoS2019 High performance Not specified 

[41] 

Controller-

Based 

Security 

System 

Not specified InSDN 
High traffic 

classification accuracy 
Not specified 

[42] 

GRU-Based 

SDN 

Defensive 

System 

GRU 

CICDDoS 

2019, CICIDS 

2018 

High detection 

accuracy 
Not specified 

[43] 
GAN-Based 

Detection 
GAN 

Real SDN 

network 

dataset, 

CICDDoS 

99.78% (real SDN 

network), 95.54% 

(CICDDoS 2019) 

Not specified 



2019 

[44] 
SAE-MLP 

Algorithm 

Stacked 

Autoencoder, 

MLP 

Realistic SDN 

dataset 
99.75% Not specified 

[45] 
CNN-Based 

IDS 
CNN InSDN 93.01% Not specified 

[46] 

DNN for SDN 

DDoS 

Detection 

DNN CICIDS 2017 97.25% Not specified 

[47] 
BRNN 

Classification 

Bi-Directional 

RNN 

Synthetic 

dataset 
99.21% Not specified 

[48] 

Deep 

Reinforcement 

Learning 

Deep RL Not specified Not specified 

Operational 

challenges and 

efficiency 

concerns 

[49] 
LOA and 

CNN 

Lion 

Optimization 

Algorithm, CNN 

NSL-KDD 98.20% Not specified 

[50] 

SAE for 

Multi-Vector 

DDoS 

Stacked 

Autoencoder 

(SAE) 

Not specified 95.65% Not specified 

[51] 
DNN-Based 

NIDS 
DNN InSDN 75.75% 

Lower detection 

accuracy 

[52] 

Unsupervised 

RBM 

Algorithm 

Restricted 

Boltzmann 

Machine 

Synthetic 

dataset 
92% 

False-positive 

rate 

 

6. Research Gaps and Open Research Issues 

Mitigating DDoS (Distributed Denial of Service) attacks in Software-Defined Networking (SDN) using Machine 

Learning (ML) and Deep Learning (DL) presents a unique set of challenges and opportunities. Here are some 

research gaps and open research issues in this specific domain: 

• Evolving Attack Vectors: DDoS attack vectors are continually evolving. Research needs to focus on 

developing adaptive ML and DL models that can detect and mitigate not only known attack types but also 

new, previously unseen attack vectors. 

• Adaptive Mitigation Strategies: Building ML and DL models that can adapt their mitigation strategies in 

real-time based on the characteristics of the attack is a critical research challenge. The ability to adjust 

mitigation actions to minimize collateral damage is essential. 

• Transfer Learning: Research should explore the potential of transfer learning to leverage knowledge 

gained from one type of DDoS attack to enhance the detection and mitigation of other types. This could 

improve the efficiency of response mechanisms. 

• Detection vs. Mitigation Balance: Striking the right balance between detection and mitigation is 

challenging. Research should address when and how to initiate mitigation actions without impacting 

legitimate traffic. 

 



• Zero-Day Attacks: Zero-day DDoS attacks that exploit previously unknown vulnerabilities are a significant 

threat. Research needs to focus on methods for early detection and mitigation of these attacks. 

• Performance Optimization: The resource-intensive nature of ML and DL models can impact the 

performance and responsiveness of SDN networks. Research should concentrate on optimizing the 

computational efficiency of these models for real-time operation. 

• Multi-Layered Defenses: Combining ML and DL with traditional security mechanisms like firewalls and 

intrusion prevention systems is a potential approach. Research should explore how to integrate these layers 

effectively. 

• Resource Allocation: Determining how to allocate computational resources for ML and DL models in 

SDN environments is an open issue. Adaptive resource allocation strategies are required. 

• Data Labeling Challenges: Annotated datasets for training ML and DL models are essential. However, 

labeling network traffic data accurately, especially in the context of SDN-specific attacks, can be difficult. 

Research should address this challenge. 

• Robustness to Adversarial Attacks: DDoS mitigation models are vulnerable to adversarial attacks aimed at 

deceiving the system. Research should investigate methods for making ML and DL models more robust 

against adversarial attacks. 

• Privacy-Preserving Solutions: Developing mechanisms to protect sensitive data while still allowing ML 

and DL models to operate effectively is a critical research gap, especially in the context of SDN. 

• Interpretability and Explainability: Understanding how ML and DL models make decisions is essential for 

network administrators and security analysts. Developing interpretable and explainable models is an 

ongoing research challenge. 

• Network Anomaly Detection: Beyond DDoS attacks, research should address the detection of various 

network anomalies that can disrupt SDN environments. These anomalies may not always be the result of 

malicious activity but can still affect network performance. 

• Ethical and Legal Considerations: As automated DDoS mitigation systems become more prevalent, 

researchers should investigate the ethical and legal implications of actions taken in response to detected 

attacks. 

 

7. Conclusion 

 

In this  literature review (LR)  paper, we have examined a wide range of research efforts aimed at mitigating 

Distributed Denial of Service (DDoS) attacks within Software-Defined Networking (SDN) environments, primarily 

leveraging Machine Learning (ML) and Deep Learning (DL) approaches. The comprehensive analysis of the 

selected studies reveals several significant findings. First, ML and DL techniques have demonstrated substantial 

potential in enhancing DDoS attack detection and mitigation in SDN, showing adaptability to evolving attack 

vectors and real-time response capabilities. Furthermore, these models exhibit robustness and efficiency, offering a 

promising route to counter the dynamic threat landscape. However, challenges remain in achieving optimal 

performance, scalability, and resource efficiency while preserving the interpretability of these models and 

addressing ethical and legal considerations. Curating labeled datasets and preparing network administrators for the 

collaborative use of ML and DL-based DDoS mitigation systems are essential steps in realizing the full potential of 

these technologies. This LR underscores the evolving nature of DDoS threats and the critical need for innovative 

and adaptive approaches in SDN to ensure the security and stability of modern networks. 
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