Download PDFOpen PDF in browserAutomatic quantification of fatty infiltration of the supraspinatus from MRI4 pages•Published: December 13, 2022AbstractFat fraction of the rotator cuff muscles has been shown to be a predictor of rotator cuff repair failure. In clinical diagnosis, fat fraction of the affected muscle is typically assessed visually on the oblique 2D Y-view and categorized according to the Goutallier scale on T1 weighted MRI. To enable a quantitative fat fraction measure of the rotator cuff muscles, an automated analysis of the whole muscle and Y-view slice was developed utilizing 2-point Dixon MRI. 3D nn-Unet were trained on water only 2-point Dixon data and corresponding annotations for the automatic segmentation of the supraspinatus, humerus and scapula and the detection of 3 anatomical landmarks for the automatic reconstruction of the Y-view slice. The supraspinatus was segmented with a Dice coefficient of 90% (N=24) and automatic fat fraction measurements with a difference from manual measurements of 1.5 % for whole muscle and 0.6% for Y-view evaluation (N=21) were observed. The presented automatic analysis demonstrates the feasibility of a 3D quantification of fat fraction of the rotator cuff muscles for the investigation of more accurate predictors of rotator cuff repair outcome.Keyphrases: deep learning, mri, muscle fat fraction, rotator cuff, shoulder In: Ferdinando Rodriguez Y Baena, Joshua W Giles and Eric Stindel (editors). Proceedings of The 20th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, vol 5, pages 107-110.
|