Download PDFOpen PDF in browserVariation of the femoral J-Curve in the native knee6 pages•Published: September 25, 2020AbstractThe J-Curve in the native knee as well as the femoral component’s J-Curve after total knee arthroplasty are known to have a high influence on kinematics. Furthermore, the J-Curve’s shape affects ligament strain and tension and consequently already slight changes may strongly alter knee forces and stability. To optimize current implants’ J-Curve design with regard to the population’s morphology, information about the main sources of contour variation is necessary.In this study, a principal component analysis (PCA) was performed on the medial and lateral femoral J-Curves of 90 cadavers without history of osteoarthritis. The J-Curves’ mean shapes were further investigated by geometric parameter analysis and effect sizes were calculated for the first three principal components (PCs). In addition, a combined PCA for both sides was performed and evaluated qualitatively. The results were compared with the variation in standard implants’ J-Curve shape. The isolated PCA of medial and lateral J-Curves resulted in PCs involving changes in contour orientation, arc length, scaling and circularity. The combined PCA of both sides resulted in PCs comprising combinations of the individual variations together with changes in relative position. In contrast, the qualitative evaluation of J-Curves from 2 different standard implant systems revealed no visible changes in shape but only changes in size. Limitations of this study were the restriction to a 2-dimensional contour derivation and the sole consideration of the femoral contours. Nevertheless, the sagittal variability in the medial, lateral and combined femoral J-Curves should be considered in implant design. Keyphrases: geometric parameter analysis, j curve, principal component analysis In: Ferdinando Rodriguez Y Baena and Fabio Tatti (editors). CAOS 2020. The 20th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, vol 4, pages 86-91.
|