Download PDFOpen PDF in browserCurrent version

How Many Bits Does it Take to Quantize Your Neural Network?

EasyChair Preprint 1000, version 2

Versions: 123history
8 pagesDate: September 12, 2019

Abstract

Quantization converts neural networks into low-bit fixed-point computations
which can be carried out by efficient integer-only hardware,
and is standard practice for the deployment of neural networks on
real-time embedded devices.
However, like their real-numbered counterpart, quantized networks are not immune
to malicious misclassification caused by adversarial attacks.
We investigate how quantization affects a network's robustness
to adversarial attacks, which is a formal verification question.
We show that neither robustness nor non-robustness are monotonic
with changing the number of bits for the representation and,
also, neither are preserved by quantization from a real-numbered network.
For this reason, we introduce a verification method for quantized
neural networks which, using SMT solving over bit-vectors,
accounts for their exact, bit-precise semantics.
We built a tool and analyzed the effect of quantization on a classifier for the
MNIST dataset. We demonstrate that, compared to our method,
existing methods for the analysis of real-numbered networks often derive
false conclusions about their quantizations,
both when determining robustness and when detecting attacks,
and that existing methods for quantized networks often miss attacks.
Furthermore, we applied our method beyond robustness,
showing how the number of bits in quantization enlarges the gender bias
of a predictor for students' grades.

Keyphrases: Quantized Neural Networks, SMT solving, adversarial attacks, bit-vectors

BibTeX entry
BibTeX does not have the right entry for preprints. This is a hack for producing the correct reference:
@booklet{EasyChair:1000,
  author    = {Mirco Giacobbe and Thomas A. Henzinger and Mathias Lechner},
  title     = {How Many Bits Does it Take to Quantize Your Neural Network?},
  howpublished = {EasyChair Preprint 1000},
  year      = {EasyChair, 2019}}
Download PDFOpen PDF in browserCurrent version