Download PDFOpen PDF in browserModeling and Design Optimization of an Cost Effective Alternative Rain Sensing Wiper SystemEasyChair Preprint 1610, version 215 pages•Date: November 9, 2019AbstractThe conventional wiper system in an automobile is operated by the Lucas motor (12V heavy duty) and is connected to the micro-controller of the vehicle. In places like Mumbai, where there is heavy and persistent rainfall, such systems can malfunction due to water logging in the vehicles. In this paper, we present the mathematical modeling and design optimization of an electrochemical based rain sensing wiper system which works with minimal electronics and is independent in operation of the micro-controller of the vehicle. The main component of the system is an electrochemical cell having an accordion joint salt bridge made of straw which is modeled as a mass-spring-damper system and which produces a deflection of 3.2 μm under the impulse force of a single raindrop. When the circuit is completed due to deflection of the salt bridge, it generates sufficient current which is fed as input to the set of transistors in Darlington configuration making the wiper to run at the rated speed and also performs other functions like opening/closing of windows and doors. A solar charged 12V DC battery can be used to supply the necessary power to the wiper. The modeling and optimisation in design with comparison with the conventional Lucas motor based wiper system is presented in this paper. Furthermore, cost reduction is also considered in implementation of this design. Keyphrases: DC geared motor, Electrochemical, Rain Sensing, Wiper motor, Wiper system, accordion joint salt bridge, electrochemical rain sensor, mathematical model, salt bridge, wiper
|